Geschiedenis Van De Wiskunde
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dirichlet Character Difference Graphs 1
DIRICHLET CHARACTER DIFFERENCE GRAPHS M. BUDDEN, N. CALKINS, W. N. HACK, J. LAMBERT and K. THOMPSON Abstract. We define Dirichlet character difference graphs and describe their basic properties, includ- ing the enumeration of triangles. In the case where the modulus is an odd prime, we exploit the spectral properties of such graphs in order to provide meaningful upper bounds for their diameter. 1. Introduction Upon one's first encounter with abstract algebra, a theorem which resonates throughout the theory is Cayley's theorem, which states that every finite group is isomorphic to a subgroup of some symmetric group. The significance of such a result comes from giving all finite groups a common ground by allowing one to focus on groups of permutations. It comes as no surprise that algebraic graph theorists chose the name Cayley graphs to describe graphs which depict groups. More formally, if G is a group and S is a subset of G closed under taking inverses and not containing the identity, then the Cayley graph, Cay(G; S), is defined to be the graph with vertex set G and an edge occurring between the vertices g and h if hg−1 2 S [9]. Some of the first examples of JJ J I II Cayley graphs that are usually encountered include the class of circulant graphs. A circulant graph, denoted by Circ(m; S), uses Z=mZ as the group for a Cayley graph and the generating set S is Go back m chosen amongst the integers in the set f1; 2; · · · b 2 cg [2]. -
Introducing the Mini-DML Project Thierry Bouche
Introducing the mini-DML project Thierry Bouche To cite this version: Thierry Bouche. Introducing the mini-DML project. ECM4 Satellite Conference EMANI/DML, Jun 2004, Stockholm, Sweden. 11 p.; ISBN 3-88127-107-4. hal-00347692 HAL Id: hal-00347692 https://hal.archives-ouvertes.fr/hal-00347692 Submitted on 16 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing the mini-DML project Thierry Bouche Université Joseph Fourier (Grenoble) WDML workshop Stockholm June 27th 2004 Introduction At the Göttingen meeting of the Digital mathematical library project (DML), in May 2004, the issue was raised that discovery and seamless access to the available digitised litterature was still a task to be acomplished. The ambitious project of a comprehen- sive registry of all ongoing digitisation activities in the field of mathematical research litterature was agreed upon, as well as the further investigation of many linking op- tions to ease user’s life. However, given the scope of those projects, their benefits can’t be expected too soon. Between the hope of a comprehensive DML with many eYcient entry points and the actual dissemination of heterogeneous partial lists of available material, there is a path towards multiple distributed databases allowing integrated search, metadata exchange and powerful interlinking. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. -
201.1.8001 Fall 2013-2014 Lecture Notes Updated: December 24, 2014
INTRODUCTION TO PROBABILITY ARIEL YADIN Course: 201.1.8001 Fall 2013-2014 Lecture notes updated: December 24, 2014 Contents Lecture 1. 3 Lecture 2. 9 Lecture 3. 18 Lecture 4. 24 Lecture 5. 33 Lecture 6. 38 Lecture 7. 44 Lecture 8. 51 Lecture 9. 57 Lecture 10. 66 Lecture 11. 73 Lecture 12. 76 Lecture 13. 81 Lecture 14. 87 Lecture 15. 92 Lecture 16. 101 1 2 Lecture 17. 105 Lecture 18. 113 Lecture 19. 118 Lecture 20. 131 Lecture 21. 135 Lecture 22. 140 Lecture 23. 156 Lecture 24. 159 3 Introduction to Probability 201.1.8001 Ariel Yadin Lecture 1 1.1. Example: Bertrand's Paradox We begin with an example [this is known as Bertrand's paradox]. Joseph Louis Fran¸cois Question 1.1. Consider a circle of radius 1, and an equilateral triangle bounded in the Bertrand (1822{1900) circle, say ABC. (The side length of such a triangle is p3.) Let M be a randomly chosen chord in the circle. What is the probability that the length of M is greater than the length of a side of the triangle (i.e. p3)? Solution 1. How to chose a random chord M? One way is to choose a random angle, let r be the radius at that angle, and let M be the unique chord perpendicular to r. Let x be the intersection point of M with r. (See Figure 1, left.) Because of symmetry, we can rotate the triangle so that the chord AB is perpendicular to r. Since the sides of the triangle intersect the perpendicular radii at distance 1=2 from 0, M is longer than AB if and only if x is at distance at most 1=2 from 0. -
Symmetry and Mathematics
A Conceptual History of Space and Symmetry Pietro Giuseppe Fré A Conceptual History of Space and Symmetry From Plato to the Superworld 123 Pietro Giuseppe Fré University of Torino Turin, Italy ISBN 978-3-319-98022-5 ISBN 978-3-319-98023-2 (eBook) https://doi.org/10.1007/978-3-319-98023-2 Library of Congress Control Number: 2018950942 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland This book is dedicated to my family, namely to my beloved daughter Laura, to my darling wife Olga, to my young son Vladimir and to my former wife Tiziana, Laura’s mother, with whom, notwithstanding our divorce, the ties due to a common daughter and to more than twenty five years spent together remain strong. -
Mathematisches Forschungsinstitut Oberwolfach the History Of
Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2004 The History of Differential Equations, 1670–1950 Organised by Thomas Archibald (Wolfville) Craig Fraser (Toronto) Ivor Grattan-Guinness (Middlesex) October 31st – November 6th, 2004 Mathematics Subject Classification (2000): 01A45, 01A50, 01A55, 01A60, 34-03, 35-03. Introduction by the Organisers Differential equations have been a major branch of pure and applied mathematics since their inauguration in the mid 17th century. While their history has been well studied, it remains a vital field of on-going investigation, with the emergence of new connections with other parts of mathematics, fertile interplay with applied subjects, interesting reformulation of basic problems and theory in various periods, new vistas in the 20th century, and so on. In this meeting we considered some of the principal parts of this story, from the launch with Newton and Leibniz up to around 1950. ‘Differential equations’ began with Leibniz, the Bernoulli brothers and others from the 1680s, not long after Newton’s ‘fluxional equations’ in the 1670s. Appli- cations were made largely to geometry and mechanics; isoperimetrical problems were exercises in optimisation. Most 18th-century developments consolidated the Leibnizian tradition, extend- ing its multi-variate form, thus leading to partial differential equations. General- isation of isoperimetrical problems led to the calculus of variations. New figures appeared, especially Euler, Daniel Bernoulli, Lagrange and Laplace. Development of the general theory of solutions included singular ones, functional solutions and those by infinite series. Many applications were made to mechanics, especially to astronomy and continuous media. In the 19th century: general theory was enriched by development of the un- derstanding of general and particular solutions, and of existence theorems. -
A48 Integers 11 (2011) Enumeration of Triangles in Quartic Residue
#A48 INTEGERS 11 (2011) ENUMERATION OF TRIANGLES IN QUARTIC RESIDUE GRAPHS Mark Budden Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC [email protected] Nicole Calkins Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] William Nathan Hack Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Joshua Lambert Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Kimberly Thompson Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Received: 10/10/10, Accepted: 7/19/11, Published: 9/13/11 Abstract For a fixed prime p 1 (mod 4), we define the corresponding quartic residue graph and determine the n≡umber of triangles contained in such a graph. Our computation requires us to compute the number of pairs of consecutive quartic residues modulo p via the evaluation of certain quartic Jacobi sums. 1. Introduction Although Raymond Paley’s life passed by quickly, his impact resonated across mul- tiple mathematical disciplines such as complex analysis, combinatorics, number theory, and harmonic analysis [2, 8, 9, 10]. Perhaps one of Paley’s most notable contributions occurred when he brought the fields of combinatorics and number theory even closer together. One such mathematical achievement came about in INTEGERS: 11 (2011) 2 1933, when Paley [8] used the quadratic residues of the field with prime order p 3 ≡ (mod 4) to construct Hadamard matrices of order p + 1. While Paley passed away that same year, his results spurred a great deal of interest. One person that took notice of Paley’s achievements was Horst Sachs [12]. -
LIE, MARIUS SOPHUS (B
ndsbv4_L 9/25/07 1:15 PM Page 307 Licklider Lie Technical Documents.” American Documentation 17 (1966): reliable history book on IPTO based on the historical 186–189. documents of the agency that include normally inaccessible With Robert W. Taylor and Evan Herbert. “Computer as a records. Communication Device.” Science & Technology 76 (1968): O’Neill, Judy E. “The Role of ARPA in the Development of the 21–31. ARPANET, 1961–1972.” IEEE Annals of the History of With A. Vezza. “Applications of Information Technology.” Computing 17, no. 4 (1995): 76–81. Proceedings of the IEEE 66 (1978): 1330–1346. Waldrop, M. Mitchell. The Dream Machine: J. C. R. Licklider and the Revolution That Made Computing Personal. New York: OTHER SOURCES Viking, 2001. Biographical history book for general readers Aspray, William, and Arthur L. Norberg. “J. C. R. Licklider.” based on documents and interviews. Author’s interviews with OH 150. 28 October 1988, Cambridge, MA; Charles Louise Licklider and others result in a lively description of Babbage Institute, University of Minnesota, Minneapolis. A Licklider’s personality. scholarly oral history record. “Bolt Beranek and Newman: The First 40 Years.” Special issues, Chigusa Ishikawa Kita IEEE Annals of the History of Computing 27, no. 2 (2005); 28, no. 1 (2006). Some of these papers refer to Licklider’s contribution in the establishment of BBN’s role in the history of computing and networking: Leo Beranek, “BBN’s Earliest Days: Founding a Culture of Engineering Creativity” LIE, MARIUS SOPHUS (b. Nordfjordeide, (27, no. 2: 6–14); John A. Swets, “ABC’s of BBN: From Norway, 17 December 1842; d. -
Newsletter of the European Mathematical Society
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society June 2019 Issue 112 ISSN 1027-488X Feature Interviews Research Center Determinantal Point Processes Peter Scholze Isaac Newton Institute The Littlewood–Paley Theory Artur Avila for Mathematical Sciences Artur Avila (photo courtesy of Daryan Dornelles/Divulgação IMPA) Journals published by the ISSN print 1463-9963 Editors: ISSN online 1463-9971 José Francisco Rodrigues (Universidade de Lisboa, Portugal), Charles M. Elliott (University 2019. Vol. 21. 4 issues of Warwick, Coventry, UK), Harald Garcke (Universität Regensburg,Germany), Juan Luis Approx. 500 pages. 17 x 24 cm Vazquez (Universidad Autónoma de Madrid, Spain) Price of subscription: 390 ¤ online only Aims and Scope 430 ¤ print+online Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application. ISSN print 0232-2064 A periodical edited by the University of Leipzig ISSN online 1661-4354 Managing Editors: 2019. Vol. 38. 4 issues J. Appell (Universität Würzburg, Germany), T. Eisner (Universität Leipzig, Germany), B. Approx. 500 pages. 17 x 24 cm Kirchheim (Universität Leipzig, Germany) Price of subscription: 190 ¤ online only Aims and Scope Journal for Analysis and its Applications aims at disseminating theoretical knowledge 230 ¤ print+online The in the field of analysis and, at the same time, cultivating and extending its applications. -
View This Volume's Front and Back Matter
Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore. -
Sophus Lie: a Real Giant in Mathematics by Lizhen Ji*
Sophus Lie: A Real Giant in Mathematics by Lizhen Ji* Abstract. This article presents a brief introduction other. If we treat discrete or finite groups as spe- to the life and work of Sophus Lie, in particular cial (or degenerate, zero-dimensional) Lie groups, his early fruitful interaction and later conflict with then almost every subject in mathematics uses Lie Felix Klein in connection with the Erlangen program, groups. As H. Poincaré told Lie [25] in October 1882, his productive writing collaboration with Friedrich “all of mathematics is a matter of groups.” It is Engel, and the publication and editing of his collected clear that the importance of groups comes from works. their actions. For a list of topics of group actions, see [17]. Lie theory was the creation of Sophus Lie, and Lie Contents is most famous for it. But Lie’s work is broader than this. What else did Lie achieve besides his work in the 1 Introduction ..................... 66 Lie theory? This might not be so well known. The dif- 2 Some General Comments on Lie and His Impact 67 ferential geometer S. S. Chern wrote in 1992 that “Lie 3 A Glimpse of Lie’s Early Academic Life .... 68 was a great mathematician even without Lie groups” 4 A Mature Lie and His Collaboration with Engel 69 [7]. What did and can Chern mean? We will attempt 5 Lie’s Breakdown and a Final Major Result . 71 to give a summary of some major contributions of 6 An Overview of Lie’s Major Works ....... 72 Lie in §6. -
Hardy Spaces Nikolaï Nikolski Frontmatter More Information
Cambridge University Press 978-1-107-18454-1 — Hardy Spaces Nikolaï Nikolski Frontmatter More Information CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 179 Editorial Board B. BOLLOBAS,´ W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO HARDY SPACES The theory of Hardy spaces is a cornerstone of modern analysis. It combines techniques from functional analysis, the theory of analytic functions, and Lesbesgue integration to create a powerful tool for many applications, pure and applied, from signal processing and Fourier analysis to maximum modulus principles and the Riemann zeta function. This book, aimed at beginning graduate students, introduces and develops the classical results on Hardy spaces and applies them to fundamental concrete problems in analysis. The results are illustrated with numerous solved exercises which also introduce subsidiary topics and recent developments. The reader’s understanding of the current state of the eld, as well as its history, are further aided by engaging accounts of the key players and by the surveys of recent advances (with commented reference lists) that end each chapter. Such broad coverage makes this book the ideal source on Hardy spaces. Nikola¨ı Nikolski is Professor Emeritus at the Universite´ de Bordeaux working primarily in analysis and operator theory. He has been co-editor of four international journals and published numerous articles and research monographs. He has also supervised some 30 PhD students, including three Salem Prize winners. Professor Nikolski was elected Fellow of the AMS in 2013 and received the Prix Ampere` of the French Academy of Sciences in 2010. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-18454-1 — Hardy Spaces Nikolaï Nikolski Frontmatter More Information CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS Editorial Board B.