Paley Graphs and Their Generalizations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discrete Mathematics Lecture Notes Incomplete Preliminary Version
Discrete Mathematics Lecture Notes Incomplete Preliminary Version Instructor: L´aszl´oBabai Last revision: June 22, 2003 Last update: April 2, 2021 Copyright c 2003, 2021 by L´aszl´oBabai All rights reserved. Contents 1 Logic 1 1.1 Quantifier notation . 1 1.2 Problems . 1 2 Asymptotic Notation 5 2.1 Limit of sequence . 6 2.2 Asymptotic Equality and Inequality . 6 2.3 Little-oh notation . 9 2.4 Big-Oh, Omega, Theta notation (O, Ω, Θ) . 9 2.5 Prime Numbers . 11 2.6 Partitions . 11 2.7 Problems . 12 3 Convex Functions and Jensen's Inequality 15 4 Basic Number Theory 19 4.1 Introductory Problems: g.c.d., congruences, multiplicative inverse, Chinese Re- mainder Theorem, Fermat's Little Theorem . 19 4.2 Gcd, congruences . 24 4.3 Arithmetic Functions . 26 4.4 Prime Numbers . 30 4.5 Quadratic Residues . 33 4.6 Lattices and diophantine approximation . 34 iii iv CONTENTS 5 Counting 37 5.1 Binomial coefficients . 37 5.2 Recurrences, generating functions . 40 6 Graphs and Digraphs 43 6.1 Graph Theory Terminology . 43 6.1.1 Planarity . 52 6.1.2 Ramsey Theory . 56 6.2 Digraph Terminology . 57 6.2.1 Paradoxical tournaments, quadratic residues . 61 7 Finite Probability Spaces 63 7.1 Finite probability space, events . 63 7.2 Conditional probability, probability of causes . 65 7.3 Independence, positive and negative correlation of a pair of events . 67 7.4 Independence of multiple events . 68 7.5 Random graphs: The Erd}os{R´enyi model . 71 7.6 Asymptotic evaluation of sequences . -
Octonion Multiplication and Heawood's
CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7]. -
Dirichlet Character Difference Graphs 1
DIRICHLET CHARACTER DIFFERENCE GRAPHS M. BUDDEN, N. CALKINS, W. N. HACK, J. LAMBERT and K. THOMPSON Abstract. We define Dirichlet character difference graphs and describe their basic properties, includ- ing the enumeration of triangles. In the case where the modulus is an odd prime, we exploit the spectral properties of such graphs in order to provide meaningful upper bounds for their diameter. 1. Introduction Upon one's first encounter with abstract algebra, a theorem which resonates throughout the theory is Cayley's theorem, which states that every finite group is isomorphic to a subgroup of some symmetric group. The significance of such a result comes from giving all finite groups a common ground by allowing one to focus on groups of permutations. It comes as no surprise that algebraic graph theorists chose the name Cayley graphs to describe graphs which depict groups. More formally, if G is a group and S is a subset of G closed under taking inverses and not containing the identity, then the Cayley graph, Cay(G; S), is defined to be the graph with vertex set G and an edge occurring between the vertices g and h if hg−1 2 S [9]. Some of the first examples of JJ J I II Cayley graphs that are usually encountered include the class of circulant graphs. A circulant graph, denoted by Circ(m; S), uses Z=mZ as the group for a Cayley graph and the generating set S is Go back m chosen amongst the integers in the set f1; 2; · · · b 2 cg [2]. -
Introducing the Mini-DML Project Thierry Bouche
Introducing the mini-DML project Thierry Bouche To cite this version: Thierry Bouche. Introducing the mini-DML project. ECM4 Satellite Conference EMANI/DML, Jun 2004, Stockholm, Sweden. 11 p.; ISBN 3-88127-107-4. hal-00347692 HAL Id: hal-00347692 https://hal.archives-ouvertes.fr/hal-00347692 Submitted on 16 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing the mini-DML project Thierry Bouche Université Joseph Fourier (Grenoble) WDML workshop Stockholm June 27th 2004 Introduction At the Göttingen meeting of the Digital mathematical library project (DML), in May 2004, the issue was raised that discovery and seamless access to the available digitised litterature was still a task to be acomplished. The ambitious project of a comprehen- sive registry of all ongoing digitisation activities in the field of mathematical research litterature was agreed upon, as well as the further investigation of many linking op- tions to ease user’s life. However, given the scope of those projects, their benefits can’t be expected too soon. Between the hope of a comprehensive DML with many eYcient entry points and the actual dissemination of heterogeneous partial lists of available material, there is a path towards multiple distributed databases allowing integrated search, metadata exchange and powerful interlinking. -
PDF of the Phd Thesis
Durham E-Theses Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs THOMAS, DANIEL,JAMES,RHYS How to cite: THOMAS, DANIEL,JAMES,RHYS (2020) Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs , Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13671/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas A Thesis presented for the degree of Doctor of Philosophy Department of Computer Science Durham University United Kingdom June 2020 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas Submitted for the degree of Doctor of Philosophy June 2020 Abstract: In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdős, Ko and Rado to graphs. -
201.1.8001 Fall 2013-2014 Lecture Notes Updated: December 24, 2014
INTRODUCTION TO PROBABILITY ARIEL YADIN Course: 201.1.8001 Fall 2013-2014 Lecture notes updated: December 24, 2014 Contents Lecture 1. 3 Lecture 2. 9 Lecture 3. 18 Lecture 4. 24 Lecture 5. 33 Lecture 6. 38 Lecture 7. 44 Lecture 8. 51 Lecture 9. 57 Lecture 10. 66 Lecture 11. 73 Lecture 12. 76 Lecture 13. 81 Lecture 14. 87 Lecture 15. 92 Lecture 16. 101 1 2 Lecture 17. 105 Lecture 18. 113 Lecture 19. 118 Lecture 20. 131 Lecture 21. 135 Lecture 22. 140 Lecture 23. 156 Lecture 24. 159 3 Introduction to Probability 201.1.8001 Ariel Yadin Lecture 1 1.1. Example: Bertrand's Paradox We begin with an example [this is known as Bertrand's paradox]. Joseph Louis Fran¸cois Question 1.1. Consider a circle of radius 1, and an equilateral triangle bounded in the Bertrand (1822{1900) circle, say ABC. (The side length of such a triangle is p3.) Let M be a randomly chosen chord in the circle. What is the probability that the length of M is greater than the length of a side of the triangle (i.e. p3)? Solution 1. How to chose a random chord M? One way is to choose a random angle, let r be the radius at that angle, and let M be the unique chord perpendicular to r. Let x be the intersection point of M with r. (See Figure 1, left.) Because of symmetry, we can rotate the triangle so that the chord AB is perpendicular to r. Since the sides of the triangle intersect the perpendicular radii at distance 1=2 from 0, M is longer than AB if and only if x is at distance at most 1=2 from 0. -
A Paley-Like Graph in Characteristic Two Andrew Thomason
Journal of Combinatorics Volume 7, Number 2–3, 365–374, 2016 A Paley-like graph in characteristic two Andrew Thomason To Adrian Bondy on his seventieth birthday The Paley graph is a well-known self-complementary pseudo-ran- dom graph, defined over a finite field of odd order. We describe an attempt at an analogous construction using fields of even order. Some properties of the graph are noted, such as the existence of a Hamiltonian decomposition. 1. Introduction The well-known Paley graph is a pseudo-random graph whose vertex set is the finite field Fq = GF (q)oforderq ≡ 1 (mod 4). The pair of vertices a, b is joined by an edge if a − b is a square in Fq.Since−1isasquarethe graph is well defined. It follows from elementary properties of the quadratic character that the Paley graph is vertex-transitive, self-complementary, and each edge is in (q − 5)/4 triangles. A graph of order q in which every edge is in (q − 5)/4 triangles and whose complement has the same property is sometimes called a conference graph. The Paley graph is thus ipso facto a pseudo-random graph, as explained in detail in [12],andinasomewhatless quantitative fashion in Chung, Graham and Wilson in [3]. The other odd prime powers, namely those where q ≡ 3 (mod 4), cannot be used to construct Paley graphs since −1 is not a square. However this very property allows the construction of a tournament, or oriented complete graph, on the vertex Fq by inserting an edge oriented from a to b if a − b is a square. -
A48 Integers 11 (2011) Enumeration of Triangles in Quartic Residue
#A48 INTEGERS 11 (2011) ENUMERATION OF TRIANGLES IN QUARTIC RESIDUE GRAPHS Mark Budden Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC [email protected] Nicole Calkins Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] William Nathan Hack Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Joshua Lambert Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Kimberly Thompson Department of Mathematics, Armstrong Atlantic State University, Savannah, GA [email protected] Received: 10/10/10, Accepted: 7/19/11, Published: 9/13/11 Abstract For a fixed prime p 1 (mod 4), we define the corresponding quartic residue graph and determine the n≡umber of triangles contained in such a graph. Our computation requires us to compute the number of pairs of consecutive quartic residues modulo p via the evaluation of certain quartic Jacobi sums. 1. Introduction Although Raymond Paley’s life passed by quickly, his impact resonated across mul- tiple mathematical disciplines such as complex analysis, combinatorics, number theory, and harmonic analysis [2, 8, 9, 10]. Perhaps one of Paley’s most notable contributions occurred when he brought the fields of combinatorics and number theory even closer together. One such mathematical achievement came about in INTEGERS: 11 (2011) 2 1933, when Paley [8] used the quadratic residues of the field with prime order p 3 ≡ (mod 4) to construct Hadamard matrices of order p + 1. While Paley passed away that same year, his results spurred a great deal of interest. One person that took notice of Paley’s achievements was Horst Sachs [12]. -
Newsletter of the European Mathematical Society
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society June 2019 Issue 112 ISSN 1027-488X Feature Interviews Research Center Determinantal Point Processes Peter Scholze Isaac Newton Institute The Littlewood–Paley Theory Artur Avila for Mathematical Sciences Artur Avila (photo courtesy of Daryan Dornelles/Divulgação IMPA) Journals published by the ISSN print 1463-9963 Editors: ISSN online 1463-9971 José Francisco Rodrigues (Universidade de Lisboa, Portugal), Charles M. Elliott (University 2019. Vol. 21. 4 issues of Warwick, Coventry, UK), Harald Garcke (Universität Regensburg,Germany), Juan Luis Approx. 500 pages. 17 x 24 cm Vazquez (Universidad Autónoma de Madrid, Spain) Price of subscription: 390 ¤ online only Aims and Scope 430 ¤ print+online Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application. ISSN print 0232-2064 A periodical edited by the University of Leipzig ISSN online 1661-4354 Managing Editors: 2019. Vol. 38. 4 issues J. Appell (Universität Würzburg, Germany), T. Eisner (Universität Leipzig, Germany), B. Approx. 500 pages. 17 x 24 cm Kirchheim (Universität Leipzig, Germany) Price of subscription: 190 ¤ online only Aims and Scope Journal for Analysis and its Applications aims at disseminating theoretical knowledge 230 ¤ print+online The in the field of analysis and, at the same time, cultivating and extending its applications. -
Arxiv:1702.00285V1 [Math.HO] 31 Jan 2017 Paley and the Paley Graphs
Paley and the Paley graphs Gareth A. Jones Abstract This paper discusses some aspects of the history of the Paley graphs and their automorphism groups. MSC Classifications: 01A60, 05-03, 05B05, 05B20, 05E30, 11E25, 12E20, 20B25, 51M20 1 Introduction Anyone who seriously studies algebraic graph theory or finite permutation groups will, sooner or later, come across the Paley graphs and their automorphism groups. The most frequently cited sources for these are respectively Paley’s 1933 paper [67], and Carlitz’s 1960 paper [14]. It is remarkable that neither of those papers uses the concepts of graphs, groups or automorphisms. Indeed, one cannot find these three terms, or any synonyms for them, in those papers: Paley’s paper is entirely about the construction of what are now called Hadamard matrices, while Carlitz’s is entirely about permutations of finite fields. The aim of the present paper is to explore how this strange situation came about, by explaining the background to these two papers and how they became associated with the Paley graphs. This involves describing various links with other branches of mathematics, such as matrix theory, number theory, design theory, coding theory, finite geometry, poly- tope theory and group theory. The paper is organised in two main parts, the first covering arXiv:1702.00285v1 [math.HO] 31 Jan 2017 the graphs and the second their automorphism groups, each largely in historical order. However, in order to establish basic concepts we start with the definition and elementary properties of the Paley graphs. 2 Definition and properties of the Paley graphs e The Paley graph P (q) has vertex set V = F := Fq, a field of prime power order q = p ≡ 1 mod (4), with two vertices u and v adjacent if and only if u − v is an element of the set S = {x2 | x ∈ F, x =06 } of quadratic residues (non-zero squares) in F. -
Codes from Incidence Matrices and Line Graphs of Paley Graphs
Advances in Mathematics of Communications doi:10.3934/amc.2011.5.93 Volume 5, No. 1, 2011, 93{108 CODES FROM INCIDENCE MATRICES AND LINE GRAPHS OF PALEY GRAPHS Dina Ghinelli Dipartimento di Matematica Universit`adi Roma `La Sapienza' I-00185 Rome, Italy Jennifer D. Key School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg 3209, South Africa (Communicated by Ivan Landjev) Abstract. We examine the p-ary codes from incidence matrices of Paley graphs P (q) where q ≡ 1 (mod 4) is a prime power, and show that the codes q(q−1) q−1 q(q−1) q−1 are [ 4 ; q − 1; 2 ]2 or [ 4 ; q; 2 ]p for p odd. By finding PD-sets we show that for q > 9 the p-ary codes, for any p, can be used for permutation decoding for full error-correction. The binary code from the line graph of P (q) is shown to be the same as the binary code from an incidence matrix for P (q). 1. Introduction The codes from the row span of adjacency matrices of Paley graphs are the well- known quadratic residue codes and studied in many texts. We look here at the codes from the row span of incidence matrices of Paley graphs, following the ideas of some earlier papers that studied such codes for various classes of graphs and their line graphs, including Hamming graphs, complete graphs, and complete bipartite graphs: see [14, 16,6,7,8]. An incidence matrix G for a graph Γ = (V; E) is a jV j × jEj matrix with rows labelled by the vertices and columns by the edges and an entry 1 if a vertex is on edge, 0 otherwise. -
Spectra of Graphs
Spectra of graphs Andries E. Brouwer Willem H. Haemers 2 Contents 1 Graph spectrum 11 1.1 Matricesassociatedtoagraph . 11 1.2 Thespectrumofagraph ...................... 12 1.2.1 Characteristicpolynomial . 13 1.3 Thespectrumofanundirectedgraph . 13 1.3.1 Regulargraphs ........................ 13 1.3.2 Complements ......................... 14 1.3.3 Walks ............................. 14 1.3.4 Diameter ........................... 14 1.3.5 Spanningtrees ........................ 15 1.3.6 Bipartitegraphs ....................... 16 1.3.7 Connectedness ........................ 16 1.4 Spectrumofsomegraphs . 17 1.4.1 Thecompletegraph . 17 1.4.2 Thecompletebipartitegraph . 17 1.4.3 Thecycle ........................... 18 1.4.4 Thepath ........................... 18 1.4.5 Linegraphs .......................... 18 1.4.6 Cartesianproducts . 19 1.4.7 Kronecker products and bipartite double. 19 1.4.8 Strongproducts ....................... 19 1.4.9 Cayleygraphs......................... 20 1.5 Decompositions............................ 20 1.5.1 Decomposing K10 intoPetersengraphs . 20 1.5.2 Decomposing Kn into complete bipartite graphs . 20 1.6 Automorphisms ........................... 21 1.7 Algebraicconnectivity . 22 1.8 Cospectralgraphs .......................... 22 1.8.1 The4-cube .......................... 23 1.8.2 Seidelswitching. 23 1.8.3 Godsil-McKayswitching. 24 1.8.4 Reconstruction ........................ 24 1.9 Verysmallgraphs .......................... 24 1.10 Exercises ............................... 25 3 4 CONTENTS 2 Linear algebra 29 2.1