PDF of the Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

PDF of the Phd Thesis Durham E-Theses Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs THOMAS, DANIEL,JAMES,RHYS How to cite: THOMAS, DANIEL,JAMES,RHYS (2020) Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs , Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13671/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas A Thesis presented for the degree of Doctor of Philosophy Department of Computer Science Durham University United Kingdom June 2020 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas Submitted for the degree of Doctor of Philosophy June 2020 Abstract: In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdős, Ko and Rado to graphs. Our main results are a proof of an Erdős-Ko-Rado type theorem for a class of trees, and a class of trees which form counterexamples to a conjecture of Hurlberg and Kamat, in such a way that extends the previous counterexamples given by Baber. Secondly, we investigate perfect graphs - specifically, edge modification aspects of perfect graphs and their subclasses. We give some alternative characterisations of perfect graphs in terms of edge modification, as well as considering the possible connection of the critically perfect graphs - previously studied by Wagler - to the Strong Perfect Graph Theorem. We prove that the situation where critically per- fect graphs arise has no analogue in seven different subclasses of perfect graphs (e.g. chordal, comparability graphs), and consider the connectivity of a bipartite reconfiguration-type graph associated to each of these subclasses. Thirdly, we consider a graph theoretic structure called a bireflexive graph where every vertex is both adjacent and nonadjacent to itself, and use this to characterise modular decompositions as the surjective homomorphisms of these structures. We examine some analogues of some graph theoretic notions and define a “dual” version of the reconstruction conjecture. Declaration The work in this thesis is based on research carried out in the Department of Computer Science at Durham University. No part of this thesis has been submitted elsewhere for any degree or qualification, and the work is all my own work unless specified to the contrary in the text. Copyright © 2020 Daniel Thomas . “The copyright of this thesis rests with the author. No quotation from it should be published without the author’s prior written consent and information derived from it should be acknowledged.” Acknowledgements To start with I want to thank the Durham School of Engineering and Computing Sciences for having me, and allowing me the use of their facilites which are first rate. I am also grateful to the department for allowing me to demonstrate in the MCS problem classes, which has been a valuable learning experience. I owe a debt of gratitude to my supervisor Matthew. For accepting me as his student, and for his patient support and encouragement throughout my studies, even in times where progress was difficult. He has been consistently available for meetings with myself, which have been informative, enjoyable and with an open-minded atmosphere. I am also thankful for his comments on the draft of this thesis which have been invaluable. Thanks are also due to Carl Feghali, with whom I enjoyed a fruitful collaboration. Finally I am extremely grateful to my family, especially my mother and father, who have supported me throughout. Is it one living being, Which has separated in itself? Or are these two, who chose To be recognized as one? — from Gingo Biloba by Goethe Dedicated to Lynn Thomas and Stephen Thomas Contents Abstract ii List of Figures xi 1 Introduction 1 1.1 Basic Definitions . .3 1.2 Overview of Thesis . .7 2 Independent Sets In Trees and the EKR Theorem 15 2.1 Introduction . 15 2.2 The Main Results . 18 2.3 Depth-two Claws . 19 2.4 Elongated Claws with Short Limbs . 24 2.5 Star Systems and Counterexamples to Conjecture 2.1.7 . 27 2.6 More general counterexamples to Conjecture 2.1.7 . 32 2.7 Trees with Multiple Large Non-Leaf Centred Stars . 35 2.8 Conjecture 2.1.7 is true for Caterpillars . 40 2.9 Remark on the number of independent r-sets in paths . 45 2.10 Remark on Disjoint Unions Of Complete Graphs . 47 Contents ix 3 Edge Modification in Perfect Graphs 48 3.1 Introduction . 48 3.1.1 Subclasses of the perfect graphs and algorithmic properties . 53 3.1.2 Main results . 56 3.2 Some Definitions and a proof of the Perfect Graph Theorem . 60 3.3 Edge Modification and the Parameters α and ω ........ 65 3.3.1 Connectivity . 69 3.3.2 Pancritical Graphs . 72 3.4 Edge Modification and The SPGT . 74 3.4.1 Dichotomy in Odd Holes and Odd Antiholes . 76 3.4.2 Minimum Imperfect Berge Graphs and Dichotomy . 77 3.4.3 Existence Of Berge-Critical Edges . 80 3.4.4 Berge-Critical Edges Contained in a P4 and Berge-Critical Edges Incident with a Vertex . 81 3.4.5 Edges that are Critical and Berge-Critical . 85 3.4.6 Triangles and Berge-Critical edges . 86 3.4.7 Distance 2 and Berge-Critical Edges . 86 3.4.8 Distance 2, Holes, and Star-Cutsets . 87 3.4.9 A Note on Distance 2 and a Property of Odd Holes . 89 3.4.10 Concluding Remarks to Section 3.4 . 90 3.5 Freedom Games . 91 3.5.1 Freedom and Perfect Graphs . 92 3.5.2 An Application to Critically and Cocritically Perfect Graphs 105 3.5.3 A Bipartite Reconfiguration-type Graph . 107 3.5.4 Concluding Remarks to Section 3.5 . 109 Contents x 4 Bireflexive Graphs, Homomorphisms, and Modular Decomposition111 4.1 Introduction . 112 4.2 Modular Decomposition: Modules, Skeletons and Primality . 114 4.3 Graph Homomorphisms . 120 4.3.1 Homomorphic Equivalence and Cores . 124 4.3.2 The Direct Product . 125 4.4 Bireflexive Graphs . 126 4.4.1 Bireflexive Graphs and Lexicographic Products . 128 4.4.2 Analogues of Theorems 4.3.3, 4.3.4 and 4.3.6 . 130 4.5 Analogues Of Colouring and Perfect Graphs . 131 4.6 The Dual Of The Reconstruction Conjecture . 134 Bibliography 146 List of Figures 2.1 T (5, 2, 3) ...................... 28 3.1 The first three examples of minimally imperfect graphs are given by C5, C7 and C7.................... 52 3.2 The unfolded tetrahedron. 68 3.3 The cycle on 5 vertices . 73 3.4 The Paley graph P (13) ................. 74 3.5 No way to add an edge to 2K2 without getting a P4 ...... 93 4.1 A biconnected graph with a module formed by the vertices labelled {1, 2, 3}....................... 116 Chapter 1 Introduction A graph is a collection of vertices, which may be adjoined pairwise by edges. In every- day language, a graph is a network. Graph theory is a branch of mathematics which studies graphs, which model the real-life networks one sees in various everyday and practical settings: friendship networks, telephone networks, and electrical networks would be some prominent examples. One simple and pervasive example of a graph is the kind that graph theorists call trees, so named because they model the branching and vascular structure of trees (and other plants). This type of graph occurs widely: in biological settings such as family trees and phylogeny, in computing settings in searching and storing data, or in communications settings in Morse code (as binary trees). We shall see some problems on trees in Chapter 2. As with any mathematical subject, graph theory has its ultimate origins in some kind of problem that needed solving. The historical origin of graph theory is thus traced to a seemingly frivolous problem that was considered, and solved, by Euler in 1736 [27]. The locals of Königsberg wondered how to traverse each of the seven bridges of Königsberg exactly once: Euler gave a simple argument that it was not possible as too many of the land masses of Königsberg could be reached from each other in an odd number of ways. Chapter 1. Introduction 2 At the time, Euler considered his theorem on the bridges of Konigsberg to be one about the “geometry of position”. The phrase “graph” was originally coined by James Joseph Sylvester in 1878 in the paper “Chemistry and Algebra” on molecular diagrams [91]. Indeed there has been a great deal of interaction between the study of graphs and chemistry, as the bonding structure of molecules can be modelled by graphs. Another problem which is both deeply entwined with the history and developement of graph theory, and also central in modern applications of graph theory, is that of graph colouring.
Recommended publications
  • Combinatorics: a First Encounter
    Combinatorics: a first encounter Darij Grinberg Thursday 10th January, 2019at 1:17am (unfinished draft!) Contents 1. Preface1 1.1. Acknowledgments . .4 2. What is combinatorics?4 2.1. Notations and conventions . .4 1. Preface These notes (which are work in progress and will remain so for the foreseeable fu- ture) are meant as an introduction to combinatorics – the mathematical discipline that studies finite sets (roughly speaking). When finished, they will cover topics such as binomial coefficients, the principles of enumeration, permutations, parti- tions and graphs. The emphasis falls on enumerative combinatorics, meaning the art of computing sizes of finite sets (“counting”), and graph theory. I have tried to keep the presentation as self-contained and elementary as possible. The reader is assumed to be familiar with some basics such as induction proofs, equivalence relations and summation signs, as well as have some experience with mathematical proofs. One of the best places to catch up on these basics and to gain said experience is the MIT lecture notes [LeLeMe16] (particularly their first five chapters). Two other resources to familiarize oneself with proofs are [Hammac15] and [Day16]. Generally, most good books about “reading and writing mathemat- ics” or “introductions to abstract mathematics” should convey these skills, although the extent to which they actually do so may differ. These notes are accompanying two classes on combinatorics (Math 4707 and 4990) I am giving at the University of Minneapolis in Fall 2017. Here is a (subjective and somewhat random) list of recommended texts on the kinds of combinatorics that will be considered in these notes: • Enumerative combinatorics (aka counting): 1 Notes on graph theory (Thursday 10th January, 2019, 1:17am) page 2 – The very basics of the subject can be found in [LeLeMe16, Chapters 14– 15].
    [Show full text]
  • Arxiv:2106.16130V1 [Math.CO] 30 Jun 2021 in the Special Case of Cyclohedra, and by Cardinal, Langerman and P´Erez-Lantero [5] in the Special Case of Tree Associahedra
    LAGOS 2021 Bounds on the Diameter of Graph Associahedra Jean Cardinal1;4 Universit´elibre de Bruxelles (ULB) Lionel Pournin2;4 Mario Valencia-Pabon3;4 LIPN, Universit´eSorbonne Paris Nord Abstract Graph associahedra are generalized permutohedra arising as special cases of nestohedra and hypergraphic polytopes. The graph associahedron of a graph G encodes the combinatorics of search trees on G, defined recursively by a root r together with search trees on each of the connected components of G − r. In particular, the skeleton of the graph associahedron is the rotation graph of those search trees. We investigate the diameter of graph associahedra as a function of some graph parameters. It is known that the diameter of the associahedra of paths of length n, the classical associahedra, is 2n − 6 for a large enough n. We give a tight bound of Θ(m) on the diameter of trivially perfect graph associahedra on m edges. We consider the maximum diameter of associahedra of graphs on n vertices and of given tree-depth, treewidth, or pathwidth, and give lower and upper bounds as a function of these parameters. Finally, we prove that the maximum diameter of associahedra of graphs of pathwidth two is Θ(n log n). Keywords: generalized permutohedra, graph associahedra, tree-depth, treewidth, pathwidth 1 Introduction The vertices and edges of a polyhedron form a graph whose diameter (often referred to as the diameter of the polyhedron for short) is related to a number of computational problems. For instance, the question of how large the diameter of a polyhedron arises naturally from the study of linear programming and the simplex algorithm (see, for instance [27] and references therein).
    [Show full text]
  • Discrete Mathematics Lecture Notes Incomplete Preliminary Version
    Discrete Mathematics Lecture Notes Incomplete Preliminary Version Instructor: L´aszl´oBabai Last revision: June 22, 2003 Last update: April 2, 2021 Copyright c 2003, 2021 by L´aszl´oBabai All rights reserved. Contents 1 Logic 1 1.1 Quantifier notation . 1 1.2 Problems . 1 2 Asymptotic Notation 5 2.1 Limit of sequence . 6 2.2 Asymptotic Equality and Inequality . 6 2.3 Little-oh notation . 9 2.4 Big-Oh, Omega, Theta notation (O, Ω, Θ) . 9 2.5 Prime Numbers . 11 2.6 Partitions . 11 2.7 Problems . 12 3 Convex Functions and Jensen's Inequality 15 4 Basic Number Theory 19 4.1 Introductory Problems: g.c.d., congruences, multiplicative inverse, Chinese Re- mainder Theorem, Fermat's Little Theorem . 19 4.2 Gcd, congruences . 24 4.3 Arithmetic Functions . 26 4.4 Prime Numbers . 30 4.5 Quadratic Residues . 33 4.6 Lattices and diophantine approximation . 34 iii iv CONTENTS 5 Counting 37 5.1 Binomial coefficients . 37 5.2 Recurrences, generating functions . 40 6 Graphs and Digraphs 43 6.1 Graph Theory Terminology . 43 6.1.1 Planarity . 52 6.1.2 Ramsey Theory . 56 6.2 Digraph Terminology . 57 6.2.1 Paradoxical tournaments, quadratic residues . 61 7 Finite Probability Spaces 63 7.1 Finite probability space, events . 63 7.2 Conditional probability, probability of causes . 65 7.3 Independence, positive and negative correlation of a pair of events . 67 7.4 Independence of multiple events . 68 7.5 Random graphs: The Erd}os{R´enyi model . 71 7.6 Asymptotic evaluation of sequences .
    [Show full text]
  • Octonion Multiplication and Heawood's
    CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7].
    [Show full text]
  • Vertex Deletion Problems on Chordal Graphs∗†
    Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices.
    [Show full text]
  • The Strong Perfect Graph Theorem
    Annals of Mathematics, 164 (2006), 51–229 The strong perfect graph theorem ∗ ∗ By Maria Chudnovsky, Neil Robertson, Paul Seymour, * ∗∗∗ and Robin Thomas Abstract A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornu´ejols and Vuˇskovi´c — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both of these conjectures. 1. Introduction We begin with definitions of some of our terms which may be nonstandard. All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G.Ahole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even length. A clique in G is a subset X of V (G) such that every two members of X are adjacent.
    [Show full text]
  • The Hadwiger Number, Chordal Graphs and Ab-Perfection Arxiv
    The Hadwiger number, chordal graphs and ab-perfection∗ Christian Rubio-Montiel [email protected] Instituto de Matem´aticas, Universidad Nacional Aut´onomade M´exico, 04510, Mexico City, Mexico Department of Algebra, Comenius University, 84248, Bratislava, Slovakia October 2, 2018 Abstract A graph is chordal if every induced cycle has three vertices. The Hadwiger number is the order of the largest complete minor of a graph. We characterize the chordal graphs in terms of the Hadwiger number and we also characterize the families of graphs such that for each induced subgraph H, (1) the Hadwiger number of H is equal to the maximum clique order of H, (2) the Hadwiger number of H is equal to the achromatic number of H, (3) the b-chromatic number is equal to the pseudoachromatic number, (4) the pseudo-b-chromatic number is equal to the pseudoachromatic number, (5) the arXiv:1701.08417v1 [math.CO] 29 Jan 2017 Hadwiger number of H is equal to the Grundy number of H, and (6) the b-chromatic number is equal to the pseudo-Grundy number. Keywords: Complete colorings, perfect graphs, forbidden graphs characterization. 2010 Mathematics Subject Classification: 05C17; 05C15; 05C83. ∗Research partially supported by CONACyT-Mexico, Grants 178395, 166306; PAPIIT-Mexico, Grant IN104915; a Postdoctoral fellowship of CONACyT-Mexico; and the National scholarship programme of the Slovak republic. 1 1 Introduction Let G be a finite graph. A k-coloring of G is a surjective function & that assigns a number from the set [k] := 1; : : : ; k to each vertex of G.A k-coloring & of G is called proper if any two adjacent verticesf haveg different colors, and & is called complete if for each pair of different colors i; j [k] there exists an edge xy E(G) such that x &−1(i) and y &−1(j).
    [Show full text]
  • Ssp Structure of Some Graph Classes
    International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 939-948 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: A http://www.ijpam.eu P ijpam.eu SSP STRUCTURE OF SOME GRAPH CLASSES R. Mary Jeya Jothi1, A. Amutha2 1,2Department of Mathematics Sathyabama University Chennai, 119, INDIA Abstract: A Graph G is Super Strongly Perfect if every induced sub graph H of G possesses a minimal dominating set that meets all maximal cliques of H. Strongly perfect, complete bipartite graph, etc., are some of the most important classes of super strongly perfect graphs. Here, we analyse the other classes of super strongly perfect graphs like trivially perfect graphs and very strongly perfect graphs. We investigate the structure of super strongly perfect graph in friendship graphs. Also, we discuss the maximal cliques, colourability and dominating sets in friendship graphs. AMS Subject Classification: 05C75 Key Words: super strongly perfect graph, trivially perfect graph, very strongly perfect graph and friendship graph 1. Introduction Super strongly perfect graph is defined by B.D. Acharya and its characterization has been given as an open problem in 2006 [5]. Many analysation on super strongly perfect graph have been done by us in our previous research work, (i.e.,) we have investigated the classes of super strongly perfect graphs like strongly c 2015 Academic Publications, Ltd. Received: March 12, 2015 url: www.acadpubl.eu 940 R.M.J. Jothi, A. Amutha perfect, complete bipartite graph, etc., [3, 4]. In this paper we have discussed some other classes of super strongly perfect graphs like trivially perfect graph, very strongly perfect graph and friendship graph.
    [Show full text]
  • P 4-Colorings and P 4-Bipartite Graphs Chinh T
    P_4-Colorings and P_4-Bipartite Graphs Chinh T. Hoàng, van Bang Le To cite this version: Chinh T. Hoàng, van Bang Le. P_4-Colorings and P_4-Bipartite Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.109-122. hal-00958951 HAL Id: hal-00958951 https://hal.inria.fr/hal-00958951 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 4, 2001, 109–122 P4-Free Colorings and P4-Bipartite Graphs Ch´ınh T. Hoang` 1† and Van Bang Le2‡ 1Department of Physics and Computing, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada 2Fachbereich Informatik, Universitat¨ Rostock, Albert-Einstein-Straße 21, D-18051 Rostock, Germany received May 19, 1999, revised November 25, 2000, accepted December 15, 2000. A vertex partition of a graph into disjoint subsets Vis is said to be a P4-free coloring if each color class Vi induces a subgraph without a chordless path on four vertices (denoted by P4). Examples of P4-free 2-colorable graphs (also called P4-bipartite graphs) include parity graphs and graphs with “few” P4s like P4-reducible and P4-sparse graphs.
    [Show full text]
  • On Dasgupta's Hierarchical Clustering Objective and Its Relation to Other
    On Dasgupta's hierarchical clustering objective and its relation to other graph parameters Svein Høgemo1, Benjamin Bergougnoux1, Ulrik Brandes3, Christophe Paul2, and Jan Arne Telle1 1 Department of Informatics, University of Bergen, Norway 2 LIRMM, CNRS, Univ Montpellier, France 3 Social Networks Lab, ETH Z¨urich, Switzerland Abstract. The minimum height of vertex and edge partition trees are well-studied graph parameters known as, for instance, vertex and edge ranking number. While they are NP-hard to determine in general, linear- time algorithms exist for trees. Motivated by a correspondence with Das- gupta's objective for hierarchical clustering we consider the total rather than maximum depth of vertices as an alternative objective for mini- mization. For vertex partition trees this leads to a new parameter with a natural interpretation as a measure of robustness against vertex removal. As tools for the study of this family of parameters we show that they have similar recursive expressions and prove a binary tree rotation lemma. The new parameter is related to trivially perfect graph completion and there- fore intractable like the other three are known to be. We give polynomial- time algorithms for both total-depth variants on caterpillars and on trees with a bounded number of leaf neighbors. For general trees, we obtain a 2-approximation algorithm. 1 Introduction Clustering is a central problem in data mining and statistics. Although many objective functions have been proposed for (flat) partitions into clusters, hier- archical clustering has long been considered from the perspective of iterated merge (in agglomerative clustering) or split (in divisive clustering) operations.
    [Show full text]
  • Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses
    Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/55 What we’ll do 1 THE BASICS. 2 PERFECT GRAPHS. 3 COGRAPHS. 4 CHORDAL GRAPHS. 5 SPLIT GRAPHS. 6 THRESHOLD GRAPHS. 7 INTERVAL GRAPHS. 2/55 THE BASICS. 2/55 Induced Subgraphs Recall: Definition Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G is an induced subgraph of G′ if V ⊆ V ′ and E = {uv ∈ E ′ : u, v ∈ V }. Equivalently: G can be obtained from G′ by deleting vertices. Notation: G < G′ 3/55 Hereditary Graph Properties Hereditary graph property (hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Formally: a set of graphs X such that G ∈ X and H < G ⇒ H ∈ X . 4/55 Hereditary Graph Properties Hereditary graph property (Hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Examples: forests complete graphs line graphs bipartite graphs planar graphs graphs of degree at most ∆ triangle-free graphs perfect graphs 5/55 Hereditary Graph Properties Why hereditary graph classes? Vertex deletions are very useful for developing algorithms for various graph optimization problems. Every hereditary graph property can be described in terms of forbidden induced subgraphs. 6/55 Hereditary Graph Properties H-free graph = a graph that does not contain H as an induced subgraph Free(H) = the class of H-free graphs Free(M) := H∈M Free(H) M-free graphT = a graph in Free(M) Proposition X hereditary ⇐⇒ X = Free(M) for some M M = {all (minimal) graphs not in X} The set M is the set of forbidden induced subgraphs for X.
    [Show full text]
  • On Retracts, Absolute Retracts, and Folds In
    ON RETRACTS,ABSOLUTE RETRACTS, AND FOLDS IN COGRAPHS Ton Kloks1 and Yue-Li Wang2 1 Department of Computer Science National Tsing Hua University, Taiwan [email protected] 2 Department of Information Management National Taiwan University of Science and Technology [email protected] Abstract. Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also solvable in linear time when one cograph is given as an in- duced subgraph of the other. We characterize absolute retracts for the class of cographs. Foldings generalize retractions. We show that the problem to fold a trivially perfect graph onto a largest possible clique is NP-complete. For a threshold graph this folding number equals its chromatic number and achromatic number. 1 Introduction Graph homomorphisms have regained a lot of interest by the recent characteri- zation of Grohe of the classes of graphs for which Hom(G, -) is tractable [11]. To be precise, Grohe proves that, unless FPT = W[1], deciding whether there is a homomorphism from a graph G 2 G to some arbitrary graph H is polynomial if and only if the graphs in G have bounded treewidth modulo homomorphic equiv- alence. The treewidth of a graph modulo homomorphic equivalence is defined as the treewidth of its core, ie, a minimal retract.
    [Show full text]