P 4-Colorings and P 4-Bipartite Graphs Chinh T

Total Page:16

File Type:pdf, Size:1020Kb

P 4-Colorings and P 4-Bipartite Graphs Chinh T P_4-Colorings and P_4-Bipartite Graphs Chinh T. Hoàng, van Bang Le To cite this version: Chinh T. Hoàng, van Bang Le. P_4-Colorings and P_4-Bipartite Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.109-122. hal-00958951 HAL Id: hal-00958951 https://hal.inria.fr/hal-00958951 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 4, 2001, 109–122 P4-Free Colorings and P4-Bipartite Graphs Ch´ınh T. Hoang` 1† and Van Bang Le2‡ 1Department of Physics and Computing, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada 2Fachbereich Informatik, Universitat¨ Rostock, Albert-Einstein-Straße 21, D-18051 Rostock, Germany received May 19, 1999, revised November 25, 2000, accepted December 15, 2000. A vertex partition of a graph into disjoint subsets Vis is said to be a P4-free coloring if each color class Vi induces a subgraph without a chordless path on four vertices (denoted by P4). Examples of P4-free 2-colorable graphs (also called P4-bipartite graphs) include parity graphs and graphs with “few” P4s like P4-reducible and P4-sparse graphs. We prove that, given k ≥ 2, P4-FREE k-COLORABILITY is NP-complete even for comparability graphs, and for P5-free graphs. We then discuss the recognition, perfection and the Strong Perfect Graph Conjecture (SPGC) for P4-bipartite graphs with special P4-structure. In particular, we show that the SPGC is true for P4-bipartite graphs with one P3-free color class meeting every P4 at a midpoint. Keywords: Perfect graph, the Strong Perfect Graph Conjectrue, graph partition, cograph, NP-completeness 1 Introduction A graph G is perfect if, for each induced subgraph H of G, the chromatic number of H is equal to the clique number of H. Claude Berge introdued perfect graphs and conjectured around 1960’s that a graph is perfect if and only if it has no induced cycle of odd length at least five or the complement of such a cycle. Nowadays this conjecture is known as the Strong Perfect Graph Conjecture (SPGC) and is still open. We refer to [4] for more information on perfect graphs. A measure of a graph’s imperfection has been considered by Brown and Corneil [8] as follows. Given a graph G and a positive integer k, a map π : V(G) → {1,...,k} is a perfect k-coloring of G if the subgraphs induced by each color class π−1(i) is perfect. Thus, a graph is perfect if and only if it is perfect 1- colorable. Note also that, by the Perfect Graph Theorem [33], a graph G is perfect k-colorable if and only if its complement G is perfect k-colorable. In this paper we consider a particular example of perfect colorings. Our discussion is motivated by the fact that the perfection of a graph depends only on the structure of its induced paths on four vertices (denoted by P4); see [36]. In this sense, graphs with empty P4-structure (P4-free graphs) form a somewhat based graph class in discussing graph’s perfection; they are indeed perfect by a result due to Seinsche [38] (see also Jung [31]). †Research supported by NSERC. E-mail: [email protected] ‡E-mail: [email protected] 1365–8050 c 2001 Maison de l’Informatique et des Mathematiques´ Discretes` (MIMD), Paris, France 110 Ch´ınh T. Hoang` and Van Bang Le Now, we call a perfect k-coloring of a graph P4-free k-coloring if the subgraphs of that graph induced by the color classes are P4-free. Note that the P4 is self-complementary, hence G is P4-free k-colorable if and only if G is P4-free k-colorable. For general graphs, Brown [6] proved that P4-FREE k-COLORABILITY is NP-complete for k ≥ 3, and in [1], Achlioptas proved a more general result implying the NP-completeness of P4-FREE k-COLORABILITY for k ≥ 2. In the next section we shall prove that, for any integer k ≥ 2, P4-FREE k-COLORABILITY is NP-complete even for (particular) perfect graphs, and for P5-free graphs. In Section 3 we shall give some examples of P4-free 2-colorable graphs, which we also call P4-bipartite graphs. Many well understood classes of perfect graphs consists of P4-bipartite graphs only. In Sections 4 and 5, perfect P4-bipartite graphs and the SPGC for P4-bipartite graphs with special P4-structure will be discussed. The complement of a graph G is denoted by G. Graphs having no induced subgraphs isomorphic to a given graph H are called H-free. If X is a set of vertices in G, G[X] is the subgraph of G induced by X, and NG(X) is the neighborhood of X in G; that is, the set of all vertices outside X adjacent to some vertex in X. If the context is clear, we simply write N(X). The path on m vertices v1, v2,..., vm with edges vivi+1 (1 ≤ i < m) is denoted by Pm = v1v2 ···vm. The vertices v1 and vm are the endpoints of that path, the other vertices are the midpoints. The cycle on m vertices v1, v2,..., vm with edges vivi+1 (1 ≤ i < m) and v1vm is denoted by Cm = v1v2 ···vm. C2k+1 and C2k+1, k ≥ 2, are also called odd holes, respectively, odd antiholes. Graphs without odd holes and odd antiholes are called Berge graphs. 2 NP-completeness results We now consider the following problem for fixed positive integer k. P4-FREE k-COLORABILITY Is a given graph P4-free k-colorable? We show in this section that, for fixed k ≥ 2, P4-FREE k-COLORABILITY is NP-complete for perfect graphs. Notice that P4-free 1-colorability (that is, recognizing P4-free graphs) is solvable in linear time [14]. We shall reduce the following NP-complete problem ([37], see also [16]) to P4-FREE k-COLORABI- LITY. NOT-ALL-EQUAL 3SAT Given a collection C of clauses over set V of Boolean variables such that each clause has exactly three literals. Is there a truth assigment for V such that each clause in C has at least one true literal and at least one false literal? A comparability graph G is one which admits a transitive orientation G~ : If (x,y) and (y,z) are arcs of G~ , then (x,z) is also an arc of G~ . It is well known that comparability graphs are perfect. A typical example of comparability graphs are P4-free graphs, as proved by Jung [31]. Lemma 1 Given a comparability graph G, it is NP-complete to decide whether G is P4-bipartite. Proof. The problem is clearly in NP. We shall reduce NOT-ALL-EQUAL 3SAT to our problem. Let C = {C1,C2,...,Cm} be any set of clauses Ci =(ci1,ci2,ci3) given as input for NOT-ALL-EQUAL 3SAT, where the literals cik (1 ≤ i ≤ m,1 ≤ k ≤ 3) are taken from the set of variables V. We shall construct a comparability graph G which has a partition into two P4-free graphs if and only if C is satisfiable. For convenience, we call a vertex partition of a graph into two P4-free graphs a good partition of that graph. For each variable v ∈ V let G(v,v) be the graph shown in Figure 1 (left). Observation 1 G(v,v) has a good partition. Every good partition of G(v,v) must contain the labelled vertex v in one part and the labelled vertex v in the other part.✸ P4-Free Colorings and P4-Bipartite Graphs 111 For each clause Ci, let G(Ci) be the graph shown in Figure 1 (right). Observation 2 G(Ci) has a good partition. Every good partition of G(Ci) must contain two of the labelled vertices ci1,ci2,ci3 in one part and the other labelled vertex in the other part. Moreover, every partition of {ci1,ci2,ci3} into two non-empty subsets can be extended to a good partition of G(Ci). ✸ ❝ ❝.. ..❝ ❝ .... ... ✆ ❧ .... ... ✱ ❧....❝.✱ ❝ ❝ ✆ ❅ ❝ ❅ ❝.❏ ✆ ✜.. ..❝ .❝ ........❏..........✆ ❅v✜................... ❝ ... ❝ ❝ ❅❝ ... .............s ❝ ..s............ ❆ .. ❝........... ...........❝ ..❝ ✟ ❜ ✔ ❝.. ✓v❅ ✆❙ .. ◗◗❆✟s✟ ❅ ❜❜✔✧✧ ... ✓ ❙ ..❝ ❍ ✦s .❝ ❝ ❝ .. ✧ ❅ ✦ ❜ .. ❅ ❝ ✆ ❝.✧ ci1 ❍ ❝ ❅s ❝ ci3 ❜.❝ ✂❅❇ ci2 ✂❇❅ ✆ ✂ ❇❅ ❝ ❝✂ ❇❅❝ ✆❝ ❝ ❝ ❝ ❝ Fig. 1: The graphs G(v,v) (left) and G(Ci) (right) The proofs of the observations will follow by inspection, hence are omitted. We now create the graph G = G(C) from the graphs G(v,v)(v ∈ V) and the graphs G(Ci)(1 ≤ i ≤ m) as follows: For each v ∈ V and each 1 ≤ i ≤ m, connect the vertex x ∈ {v,v} in G(v,v) with the vertex cik in G(Ci) by an edge if, and only if, x is the literal cik in the clause Ci. Thus, in G, every cik (1 ≤ k ≤ 3) has exactly one neighbor outside G(Ci) which is one of the labelled vertices v,v in a graph G(v,v) (with cik ∈ {v,v} in the given NOT-ALL-EQUAL 3SAT instance). Suppose that G has a good partition into two P4-free graphs A and B. Then it is easy to see that, for all v ∈ V, if x ∈ {v,v} is adjacent to cik, then x and cik are in different parts A,B.
Recommended publications
  • Combinatorics: a First Encounter
    Combinatorics: a first encounter Darij Grinberg Thursday 10th January, 2019at 1:17am (unfinished draft!) Contents 1. Preface1 1.1. Acknowledgments . .4 2. What is combinatorics?4 2.1. Notations and conventions . .4 1. Preface These notes (which are work in progress and will remain so for the foreseeable fu- ture) are meant as an introduction to combinatorics – the mathematical discipline that studies finite sets (roughly speaking). When finished, they will cover topics such as binomial coefficients, the principles of enumeration, permutations, parti- tions and graphs. The emphasis falls on enumerative combinatorics, meaning the art of computing sizes of finite sets (“counting”), and graph theory. I have tried to keep the presentation as self-contained and elementary as possible. The reader is assumed to be familiar with some basics such as induction proofs, equivalence relations and summation signs, as well as have some experience with mathematical proofs. One of the best places to catch up on these basics and to gain said experience is the MIT lecture notes [LeLeMe16] (particularly their first five chapters). Two other resources to familiarize oneself with proofs are [Hammac15] and [Day16]. Generally, most good books about “reading and writing mathemat- ics” or “introductions to abstract mathematics” should convey these skills, although the extent to which they actually do so may differ. These notes are accompanying two classes on combinatorics (Math 4707 and 4990) I am giving at the University of Minneapolis in Fall 2017. Here is a (subjective and somewhat random) list of recommended texts on the kinds of combinatorics that will be considered in these notes: • Enumerative combinatorics (aka counting): 1 Notes on graph theory (Thursday 10th January, 2019, 1:17am) page 2 – The very basics of the subject can be found in [LeLeMe16, Chapters 14– 15].
    [Show full text]
  • Lecture 10: April 20, 2005 Perfect Graphs
    Re-revised notes 4-22-2005 10pm CMSC 27400-1/37200-1 Combinatorics and Probability Spring 2005 Lecture 10: April 20, 2005 Instructor: L´aszl´oBabai Scribe: Raghav Kulkarni TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30{6:30pm. INSTRUCTOR'S EMAIL: [email protected] TA's EMAIL: [email protected], [email protected] IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class. Perfect Graphs k 1=k Shannon capacity of a graph G is: Θ(G) := limk (α(G )) : !1 Exercise 10.1 Show that α(G) χ(G): (G is the complement of G:) ≤ Exercise 10.2 Show that χ(G H) χ(G)χ(H): · ≤ Exercise 10.3 Show that Θ(G) χ(G): ≤ So, α(G) Θ(G) χ(G): ≤ ≤ Definition: G is perfect if for all induced sugraphs H of G, α(H) = χ(H); i. e., the chromatic number is equal to the clique number. Theorem 10.4 (Lov´asz) G is perfect iff G is perfect. (This was open under the name \weak perfect graph conjecture.") Corollary 10.5 If G is perfect then Θ(G) = α(G) = χ(G): Exercise 10.6 (a) Kn is perfect. (b) All bipartite graphs are perfect. Exercise 10.7 Prove: If G is bipartite then G is perfect. Do not use Lov´asz'sTheorem (Theorem 10.4). 1 Lecture 10: April 20, 2005 2 The smallest imperfect (not perfect) graph is C5 : α(C5) = 2; χ(C5) = 3: For k 2, C2k+1 imperfect.
    [Show full text]
  • I?'!'-Comparability Graphs
    Discrete Mathematics 74 (1989) 173-200 173 North-Holland I?‘!‘-COMPARABILITYGRAPHS C.T. HOANG Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A. and B.A. REED Discrete Mathematics Group, Bell Communications Research, Morristown, NJ 07950, U.S.A. In 1981, Chv&tal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the &comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characteriza- tion of &comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for &comparability graphs. 1. Introduction A natural way to color the vertices of a graph is to put them in some order v*cv~<” l < v, and then assign colors in the following manner: (1) Consider the vertxes sequentially (in the sequence given by the order) (2) Assign to each Vi the smallest color (positive integer) not used on any neighbor vi of Vi with j c i. We shall call this the greedy coloring algorithm. An order < of a graph G is perfect if for each subgraph H of G, the greedy algorithm applied to H, gives an optimal coloring of H. An obstruction in a ordered graph (G, <) is a set of four vertices {a, b, c, d} with edges ab, bc, cd (and no other edge) and a c b, d CC. Clearly, if < is a perfect order on G, then (G, C) contains no obstruction (because the chromatic number of an obstruction is twu, but the greedy coloring algorithm uses three colors).
    [Show full text]
  • Induced Minors and Well-Quasi-Ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck
    Induced minors and well-quasi-ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck To cite this version: Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck. Induced minors and well-quasi-ordering. EuroComb: European Conference on Combinatorics, Graph Theory and Appli- cations, Aug 2015, Bergen, Norway. pp.197-201, 10.1016/j.endm.2015.06.029. lirmm-01349277 HAL Id: lirmm-01349277 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349277 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Available online at www.sciencedirect.com www.elsevier.com/locate/endm Induced minors and well-quasi-ordering Jaroslaw Blasiok 1,2 School of Engineering and Applied Sciences, Harvard University, United States Marcin Kami´nski 2 Institute of Computer Science, University of Warsaw, Poland Jean-Florent Raymond 2 Institute of Computer Science, University of Warsaw, Poland, and LIRMM, University of Montpellier, France Th´eophile Trunck 2 LIP, ENS´ de Lyon, France Abstract AgraphH is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor- free.
    [Show full text]
  • Arxiv:1907.08517V3 [Math.CO] 12 Mar 2021
    RANDOM COGRAPHS: BROWNIAN GRAPHON LIMIT AND ASYMPTOTIC DEGREE DISTRIBUTION FRÉDÉRIQUE BASSINO, MATHILDE BOUVEL, VALENTIN FÉRAY, LUCAS GERIN, MICKAËL MAAZOUN, AND ADELINE PIERROT ABSTRACT. We consider uniform random cographs (either labeled or unlabeled) of large size. Our first main result is the convergence towards a Brownian limiting object in the space of graphons. We then show that the degree of a uniform random vertex in a uniform cograph is of order n, and converges after normalization to the Lebesgue measure on [0; 1]. We finally an- alyze the vertex connectivity (i.e. the minimal number of vertices whose removal disconnects the graph) of random connected cographs, and show that this statistics converges in distribution without renormalization. Unlike for the graphon limit and for the degree of a random vertex, the limiting distribution of the vertex connectivity is different in the labeled and unlabeled settings. Our proofs rely on the classical encoding of cographs via cotrees. We then use mainly combi- natorial arguments, including the symbolic method and singularity analysis. 1. INTRODUCTION 1.1. Motivation. Random graphs are arguably the most studied objects at the interface of com- binatorics and probability theory. One aspect of their study consists in analyzing a uniform random graph of large size n in a prescribed family, e.g. perfect graphs [MY19], planar graphs [Noy14], graphs embeddable in a surface of given genus [DKS17], graphs in subcritical classes [PSW16], hereditary classes [HJS18] or addable classes [MSW06, CP19]. The present paper focuses on uniform random cographs (both in the labeled and unlabeled settings). Cographs were introduced in the seventies by several authors independently, see e.g.
    [Show full text]
  • Vertex Deletion Problems on Chordal Graphs∗†
    Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices.
    [Show full text]
  • The Strong Perfect Graph Theorem
    Annals of Mathematics, 164 (2006), 51–229 The strong perfect graph theorem ∗ ∗ By Maria Chudnovsky, Neil Robertson, Paul Seymour, * ∗∗∗ and Robin Thomas Abstract A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornu´ejols and Vuˇskovi´c — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both of these conjectures. 1. Introduction We begin with definitions of some of our terms which may be nonstandard. All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G.Ahole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even length. A clique in G is a subset X of V (G) such that every two members of X are adjacent.
    [Show full text]
  • Enumeration of Unlabeled Graph Classes a Study of Tree Decompositions and Related Approaches
    Enumeration of unlabeled graph classes A study of tree decompositions and related approaches Jessica Shi Advisor: Jérémie Lumbroso Independent Work Report Fall, 2015 Abstract In this paper, we study the enumeration of certain classes of graphs that can be fully charac- terized by tree decompositions; these classes are particularly significant due to the algorithmic improvements derived from tree decompositions on classically NP-complete problems on these classes [12, 7, 17, 35]. Previously, Chauve et al. [6] and Iriza [26] constructed grammars from the split decomposition trees of distance hereditary graphs and 3-leaf power graphs. We extend upon these results to obtain an upper bound grammar for parity graphs. Also, Nakano et al. [25] used the vertex incremental characterization of distance hereditary graphs to obtain upper bounds. We constructively enumerate (6;2)-chordal bipartite graphs, (C5, bull, gem, co-gem)-free graphs, and parity graphs using their vertex incremental characterization and extend upon Nakano et al.’s results to analytically obtain upper bounds of O7n and O11n for (6;2)-chordal bipartite graphs and (C5, bull, gem, co-gem)-free graphs respectively. 1. Introduction 1.1. Context The technique of decomposing graphs into trees has been an object of significant interest due to its applications on classical problems in graph theory. Indeed, many graph theoretic problems are inherently difficult due to the lack of recursive structure in graphs, and recursion has historically offered efficient solutions to challenging problems. In this sense, classifying graphs in terms of trees is of particular interest, since it associates a recursive structure to these graphs.
    [Show full text]
  • Partitioning a Graph Into Disjoint Cliques and a Triangle-Free Graph
    This is a repository copy of Partitioning a graph into disjoint cliques and a triangle-free graph. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85292/ Version: Accepted Version Article: Abu-Khzam, FN, Feghali, C and Muller, H (2015) Partitioning a graph into disjoint cliques and a triangle-free graph. Discrete Applied Mathematics, 190-19. 1 - 12. ISSN 0166-218X https://doi.org/10.1016/j.dam.2015.03.015 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph Faisal N. Abu-Khzam, Carl Feghali, Haiko M¨uller Abstract A graph G =(V, E) is partitionable if there exists a partition {A,B} of V such that A induces a disjoint union of cliques and B induces a triangle- free graph.
    [Show full text]
  • Arxiv:1906.05510V2 [Math.AC]
    BINOMIAL EDGE IDEALS OF COGRAPHS THOMAS KAHLE AND JONAS KRUSEMANN¨ Abstract. We determine the Castelnuovo–Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with n vertices the maximum regularity grows as 2n/3. We also bound the regularity by graph theoretic invariants and construct a family of counterexamples to a conjecture of Hibi and Matsuda. 1. Introduction Let G = ([n], E) be a simple undirected graph on the vertex set [n]= {1,...,n}. x1 ··· xn x1 ··· xn Let X = ( y1 ··· yn ) be a generic 2 × n matrix and S = k[ y1 ··· yn ] the polynomial ring whose indeterminates are the entries of X and with coefficients in a field k. The binomial edge ideal of G is JG = hxiyj −yixj : {i, j} ∈ Ei⊆ S, the ideal of 2×2 mi- nors indexed by the edges of the graph. Since their inception in [5, 15], connecting combinatorial properties of G with algebraic properties of JG or S/ JG has been a popular activity. Particular attention has been paid to the minimal free resolution of S/ JG as a standard N-graded S-module [3, 11]. The data of a minimal free res- olution is encoded in its graded Betti numbers βi,j (S/ JG) = dimk Tori(S/ JG, k)j . An interesting invariant is the highest degree appearing in the resolution, the Castelnuovo–Mumford regularity reg(S/ JG) = max{j − i : βij (S/ JG) 6= 0}. It is a complexity measure as low regularity implies favorable properties like vanish- ing of local cohomology. Binomial edge ideals have square-free initial ideals by arXiv:1906.05510v2 [math.AC] 10 Mar 2021 [5, Theorem 2.1] and, using [1], this implies that the extremal Betti numbers and regularity can also be derived from those initial ideals.
    [Show full text]
  • Box Representations of Embedded Graphs
    Box representations of embedded graphs Louis Esperet CNRS, Laboratoire G-SCOP, Grenoble, France S´eminairede G´eom´etrieAlgorithmique et Combinatoire, Paris March 2017 Definition (Roberts 1969) The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes. Ecological/food chain networks Sociological/political networks Fleet maintenance Boxicity d-box: the cartesian product of d intervals [x1; y1] ::: [xd ; yd ] of R × × Ecological/food chain networks Sociological/political networks Fleet maintenance Boxicity d-box: the cartesian product of d intervals [x1; y1] ::: [xd ; yd ] of R × × Definition (Roberts 1969) The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes. Ecological/food chain networks Sociological/political networks Fleet maintenance Boxicity d-box: the cartesian product of d intervals [x1; y1] ::: [xd ; yd ] of R × × Definition (Roberts 1969) The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes. Ecological/food chain networks Sociological/political networks Fleet maintenance Boxicity d-box: the cartesian product of d intervals [x1; y1] ::: [xd ; yd ] of R × × Definition (Roberts 1969) The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes. Ecological/food chain networks Sociological/political networks Fleet maintenance Boxicity d-box: the cartesian product of d intervals [x1; y1] ::: [xd ; yd ] of R × × Definition (Roberts 1969) The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.
    [Show full text]
  • Improved Ramsey-Type Results in Comparability Graphs
    Improved Ramsey-type results in comparability graphs D´anielKor´andi ∗ Istv´anTomon ∗ Abstract Several discrete geometry problems are equivalent to estimating the size of the largest homogeneous sets in graphs that happen to be the union of few comparability graphs. An important observation for such results is that if G is an n-vertex graph that is the union of r comparability (or more generally, perfect) graphs, then either G or its complement contains a clique of size n1=(r+1). This bound is known to be tight for r = 1. The question whether it is optimal for r ≥ 2 was studied by Dumitrescu and T´oth.We prove that it is essentially best possible for r = 2, as well: we introduce a probabilistic construction of two comparability graphs on n vertices, whose union contains no clique or independent set of size n1=3+o(1). Using similar ideas, we can also construct a graph G that is the union of r comparability graphs, and neither G, nor its complement contains a complete bipartite graph with parts of size cn (log n)r . With this, we improve a result of Fox and Pach. 1 Introduction An old problem of Larman, Matouˇsek,Pach and T¨or}ocsik[11, 14] asks for the largest m = m(n) such that among any n convex sets in the plane, there are m that are pairwise disjoint or m that pairwise intersect. Considering the disjointness graph G, whose vertices correspond to the convex sets and edges correspond to disjoint pairs, this problem asks the Ramsey-type question of estimating the largest clique or independent set in G.
    [Show full text]