Linear Separation of Connected Dominating Sets in Graphs (Extended Abstract) Nina Chiarelli1 and Martin Milanicˇ2

Total Page:16

File Type:pdf, Size:1020Kb

Linear Separation of Connected Dominating Sets in Graphs (Extended Abstract) Nina Chiarelli1 and Martin Milanicˇ2 Linear Separation of Connected Dominating Sets in Graphs (Extended Abstract) Nina Chiarelli1 and Martin Milanicˇ2 1 University of Primorska, UP FAMNIT, Glagoljaskaˇ 8, SI6000 Koper, Slovenia [email protected] 2 University of Primorska, UP IAM, Muzejski trg 2, SI6000 Koper, Slovenia University of Primorska, UP FAMNIT, Glagoljaskaˇ 8, SI6000 Koper, Slovenia [email protected] Abstract are looking for, such as matchings, cliques, stable sets, dominating sets, etc. A connected dominating set in a graph is a dominating set of vertices that induces a The above framework provides a unified way connected subgraph. We introduce and study of describing characteristic properties of several the class of connected-domishold graphs, graph classes studied in the literature, such as which are graphs that admit non-negative real threshold graphs (Chvatal´ and Hammer 1977), weights associated to their vertices such that domishold graphs (Benzaken and Hammer 1978), a set of vertices is a connected dominating total domishold graphs (Chiarelli and Milanicˇ set if and only if the sum of the correspond- 2013a; 2013b) and equistable graphs (Payan 1980; ing weights exceeds a certain threshold. We show that these graphs form a non-hereditary Mahadev, Peled, and Sun 1994). If weights as class of graphs properly containing two above exist and are given with the graph, and the well known classes of chordal graphs: block set T is given by a membership oracle, then a dy- graphs and trivially perfect graphs. We char- namic programming algorithm can be employed acterize, in several ways, the graphs every to find a subset with property P of either maxi- induced subgraph of which is connected- mum or minimum cost (according to a given cost domishold: in terms of forbidden induced function on the vertices/edges) in O(nM) time and subgraphs, in terms of 2-asummability of cer- with M calls of the membership oracle, where n tain derived Boolean functions, and in terms is the number of vertices (or edges) of G and M of the dually Sperner property of certain de- is a given upper bound for (Milanic,ˇ Orlin, and rived hypergraphs. T Rudolf 2011). The framework can also be applied more generally, in the context on Boolean opti- Introduction mization (Milanic,ˇ Orlin, and Rudolf 2011). A possible approach for dealing with the in- In general, the advantages of the above frame- tractability of a given decision or optimization work depend both on the choice of property P and problem is to identify restrictions on input in- on the constraints (if any) imposed on the structure stances under which the problem can still be solved of the set T . For example, if P denotes the property efficiently. One generic framework for describing of being a stable (independent) set, and set T is re- a kind of such restrictions in case of graph prob- stricted to be an interval unbounded from below, lems is the following: Given a graph G, does G we obtain the class of threshold graphs (Chvatal´ admit non-negative integer weights on its vertices and Hammer 1977), which is very well under- (or edges, depending on the problem) and a set T stood and admits several characterizations and lin- of integers such that a subset X of its vertices (or ear time algorithms for recognition and for several edges) has property P if and only if the sum of the optimization problems (see, e.g., (Mahadev and weights of elements of X belongs to T ? Property Peled 1995)). If P denotes the property of being P can denote any of the desired substructures we a dominating set and T is an interval unbounded from above, we obtain the class of domishold mer 2012; Butenko, Kahruman-Anderoglu, and graphs (Benzaken and Hammer 1978), which en- Ursulenko 2011; Chandran et al. 2012; Duckworth joy similar properties as the threshold graphs. On and Mans 2009; Fomin, Grandoni, and Kratsch the other hand, if P is the property of being a 2008; Karami et al. 2012; Schaudt 2012a; 2012b; maximal stable set and T is restricted to consist Schaudt and Schrader 2012). of a single number, we obtain the class of equi- Definition 1. A graph G = (V; E) is said to stable graphs (Payan 1980), for which the recogni- be connected-domishold (c-domishold for short) tion complexity is open (see, e.g., (Levit, Milanic,ˇ if there exists a pair (w; t) where w : V R+ and Tankus 2012)), no structural characterization ! is a weight function and t R+ is a thresh- is known, and several NP-hard optimization prob- old such that for every subset2S V , w(S) := lems remain intractable on this class (Milanic,ˇ Or- P w(x) t if and only if⊆ S is a con- lin, and Rudolf 2011). x2S nected dominating≥ set in G. A pair (w; t) as above Notions and results from the theory of Boolean will be referred to as a connected-domishold (c- functions (Crama and Hammer 2011) and hyper- domishold) structure of G. graph theory (Berge 1989) can be useful for the Observe that if G is disconnected, then G does study of graph classes defined within the above not have any c-dominating sets and is thus trivially framework. For instance, the characterization of c-domishold (just set w(x) = 1 for all x V (G) hereditary total domishold graphs in terms of for- and t = V (G) + 1). 2 bidden induced subgraphs from (Chiarelli and Mi- j j lanicˇ 2013b) is based on the facts that every Example 1. The complete graph of order n is threshold Boolean function is 2-asummable (Chow c-domishold. Indeed, any nonempty subset S ⊆ 1961) and that every dually Sperner hypergraph V (Kn) is a connected dominating set of Kn, and is threshold (Chiarelli and Milanicˇ 2013a). More- the pair (w; 1) where w(x) = 1 for all x V (Kn) 2 over, the fact that threshold Boolean functions are is a c-domishold structure of Kn. closed under dualization and can be recognized Example 2. The 4-cycle C4 is not c-domishold: in polynomial time (Peled and Simeone 1985) Denoting its vertices by v1; v2; v3; v4 in the cyclic leads to efficient algorithms for recognizing to- order, we see that a subset S V (C4) is c- tal domishold graphs, and for finding a minimum domishold if and only if it contains⊆ an edge. There- total dominating set in a given total domishold fore, if (w; t) is a c-domishold structure of C4, graph (Chiarelli and Milanicˇ 2013a). then w(v ) + w(v ) t for all i 1; 2; 3; 4 i i+1 ≥ 2 f g It is the aim of this note to present another (indices modulo 4), which implies w(V (C4)) ≥ application of the notions of threshold Boolean 2t. On the other hand, w(v1) + w(v3) < t and functions/hypergraphs to the above graph theo- w(v2) + w(v4) < t, implying w(V (C4)) < 2t. retic framework. More specifically, we introduce Example 3. The graph G obtained from C4 by and study the case when P is the property of be- adding to it a new vertex, say v5, and making it ing a connected dominating set and T is an inter- adjacent exactly to one vertex of the C4, say to val unbounded from above. Given a graph G = v4, is c-domishold: the (inclusion-wise) minimal c- (V; E), a connected dominating set (c-dominating dominating sets of G are v1; v4 and v3; v4 , set for short) is a subset S of the vertices of G hence a c-domishold structuref ofgG isf given byg that is dominating, that is, every vertex of G is ei- w(v2) = w(v5) = 0, w(v1) = w(v3) = 1, ther in S or has a neighbor in S, and connected, w(v4) = 2, and t = 3. that is, the subgraph of G induced by S, hence- forth denoted by G[S], is connected. The notion A graph class is said to be hereditary if it is of connected dominating sets in graphs is one of closed under vertex deletion. The above exam- the many variants of domination. It finds applica- ples show that, contrary to the classes of thresh- tions in modeling wireless network connectivity, old and domishold graphs, the class of connected- and has been extensively studied in the literature, domishold graphs is not hereditary. This motivates see, e.g., the books (Du and Wan 2013; Haynes, the following definition: Hedetniemi, and Slater 1998b; 1998a), and re- Definition 2. A graph G is said to be hereditary cent papers (Ananchuen, Ananchuen, and Plum- connected-domishold (hereditary c-domishold for short) if every induced subgraph of it is connected- A transversal of is a set S such that domishold. S e = for all eH . A hypergraph⊆ V = ( ; ) \ 6 ; 2 E H V E In general, for a graph property Π, we will say is threshold if there exist a weight function w : R+ and a threshold t R+ such that for all that a graph is hereditary Π if every induced sub- V! 2 graph of it satisfies Π. subsets X , it holds that w(X) t if and only if X contains⊆ V no edge of (Golumbic≤ 2004). A Our main result (Theorem 2) is a characteriza- H tion of hereditary connected-domishold graphs in hypergraph = ( ; ) is said to be Sperner (or: a clutter) if noH edgeV ofE contains another edge, or, terms of forbidden induced subgraphs, in terms of H 2-asummability of certain derived Boolean func- equivalently, if for every two distinct edges e and f of , it holds that min e f ; f e 1 : tions, and in terms of the dually Sperner property H fj n j j n jg ≥ of certain derived hypergraphs.
Recommended publications
  • Arxiv:2106.16130V1 [Math.CO] 30 Jun 2021 in the Special Case of Cyclohedra, and by Cardinal, Langerman and P´Erez-Lantero [5] in the Special Case of Tree Associahedra
    LAGOS 2021 Bounds on the Diameter of Graph Associahedra Jean Cardinal1;4 Universit´elibre de Bruxelles (ULB) Lionel Pournin2;4 Mario Valencia-Pabon3;4 LIPN, Universit´eSorbonne Paris Nord Abstract Graph associahedra are generalized permutohedra arising as special cases of nestohedra and hypergraphic polytopes. The graph associahedron of a graph G encodes the combinatorics of search trees on G, defined recursively by a root r together with search trees on each of the connected components of G − r. In particular, the skeleton of the graph associahedron is the rotation graph of those search trees. We investigate the diameter of graph associahedra as a function of some graph parameters. It is known that the diameter of the associahedra of paths of length n, the classical associahedra, is 2n − 6 for a large enough n. We give a tight bound of Θ(m) on the diameter of trivially perfect graph associahedra on m edges. We consider the maximum diameter of associahedra of graphs on n vertices and of given tree-depth, treewidth, or pathwidth, and give lower and upper bounds as a function of these parameters. Finally, we prove that the maximum diameter of associahedra of graphs of pathwidth two is Θ(n log n). Keywords: generalized permutohedra, graph associahedra, tree-depth, treewidth, pathwidth 1 Introduction The vertices and edges of a polyhedron form a graph whose diameter (often referred to as the diameter of the polyhedron for short) is related to a number of computational problems. For instance, the question of how large the diameter of a polyhedron arises naturally from the study of linear programming and the simplex algorithm (see, for instance [27] and references therein).
    [Show full text]
  • On Computing Longest Paths in Small Graph Classes
    On Computing Longest Paths in Small Graph Classes Ryuhei Uehara∗ Yushi Uno† July 28, 2005 Abstract The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for weighted trees, block graphs, and cacti. We next show that the longest path problem can be solved efficiently on some graph classes that have natural interval representations. Keywords: efficient algorithms, graph classes, longest path problem. 1 Introduction The Hamiltonian path problem is one of the most well known NP-hard problem, and there are numerous applications of the problems [17]. For such an intractable problem, there are two major approaches; approximation algorithms [20, 2, 35] and algorithms with parameterized complexity analyses [15]. In both approaches, we have to change the decision problem to the optimization problem. Therefore the longest path problem is one of the basic problems from the viewpoint of combinatorial optimization. From the practical point of view, it is also very natural approach to try to find a longest path in a given graph, even if it does not have a Hamiltonian path. However, finding a longest path seems to be more difficult than determining whether the given graph has a Hamiltonian path or not.
    [Show full text]
  • Vertex Deletion Problems on Chordal Graphs∗†
    Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices.
    [Show full text]
  • The Hadwiger Number, Chordal Graphs and Ab-Perfection Arxiv
    The Hadwiger number, chordal graphs and ab-perfection∗ Christian Rubio-Montiel [email protected] Instituto de Matem´aticas, Universidad Nacional Aut´onomade M´exico, 04510, Mexico City, Mexico Department of Algebra, Comenius University, 84248, Bratislava, Slovakia October 2, 2018 Abstract A graph is chordal if every induced cycle has three vertices. The Hadwiger number is the order of the largest complete minor of a graph. We characterize the chordal graphs in terms of the Hadwiger number and we also characterize the families of graphs such that for each induced subgraph H, (1) the Hadwiger number of H is equal to the maximum clique order of H, (2) the Hadwiger number of H is equal to the achromatic number of H, (3) the b-chromatic number is equal to the pseudoachromatic number, (4) the pseudo-b-chromatic number is equal to the pseudoachromatic number, (5) the arXiv:1701.08417v1 [math.CO] 29 Jan 2017 Hadwiger number of H is equal to the Grundy number of H, and (6) the b-chromatic number is equal to the pseudo-Grundy number. Keywords: Complete colorings, perfect graphs, forbidden graphs characterization. 2010 Mathematics Subject Classification: 05C17; 05C15; 05C83. ∗Research partially supported by CONACyT-Mexico, Grants 178395, 166306; PAPIIT-Mexico, Grant IN104915; a Postdoctoral fellowship of CONACyT-Mexico; and the National scholarship programme of the Slovak republic. 1 1 Introduction Let G be a finite graph. A k-coloring of G is a surjective function & that assigns a number from the set [k] := 1; : : : ; k to each vertex of G.A k-coloring & of G is called proper if any two adjacent verticesf haveg different colors, and & is called complete if for each pair of different colors i; j [k] there exists an edge xy E(G) such that x &−1(i) and y &−1(j).
    [Show full text]
  • Ssp Structure of Some Graph Classes
    International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 939-948 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: A http://www.ijpam.eu P ijpam.eu SSP STRUCTURE OF SOME GRAPH CLASSES R. Mary Jeya Jothi1, A. Amutha2 1,2Department of Mathematics Sathyabama University Chennai, 119, INDIA Abstract: A Graph G is Super Strongly Perfect if every induced sub graph H of G possesses a minimal dominating set that meets all maximal cliques of H. Strongly perfect, complete bipartite graph, etc., are some of the most important classes of super strongly perfect graphs. Here, we analyse the other classes of super strongly perfect graphs like trivially perfect graphs and very strongly perfect graphs. We investigate the structure of super strongly perfect graph in friendship graphs. Also, we discuss the maximal cliques, colourability and dominating sets in friendship graphs. AMS Subject Classification: 05C75 Key Words: super strongly perfect graph, trivially perfect graph, very strongly perfect graph and friendship graph 1. Introduction Super strongly perfect graph is defined by B.D. Acharya and its characterization has been given as an open problem in 2006 [5]. Many analysation on super strongly perfect graph have been done by us in our previous research work, (i.e.,) we have investigated the classes of super strongly perfect graphs like strongly c 2015 Academic Publications, Ltd. Received: March 12, 2015 url: www.acadpubl.eu 940 R.M.J. Jothi, A. Amutha perfect, complete bipartite graph, etc., [3, 4]. In this paper we have discussed some other classes of super strongly perfect graphs like trivially perfect graph, very strongly perfect graph and friendship graph.
    [Show full text]
  • Introducing Subclasses of Basic Chordal Graphs
    Introducing subclasses of basic chordal graphs Pablo De Caria 1 Marisa Gutierrez 2 CONICET/ Universidad Nacional de La Plata, Argentina Abstract Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible trees of dually chordal graphs. They were defined as those chordal graphs whose clique trees are exactly the compatible trees of its clique graph. In this work, we consider some subclasses of basic chordal graphs, like hereditary basic chordal graphs, basic DV and basic RDV graphs, we characterize them and we find some other properties they have, mostly involving clique graphs. Keywords: Chordal graph, dually chordal graph, clique tree, compatible tree. 1 Introduction 1.1 Definitions For a graph G, V (G) is the set of its vertices and E(G) is the set of its edges. A clique is a maximal set of pairwise adjacent vertices. The family of cliques of G is denoted by C(G). For v ∈ V (G), Cv will denote the family of cliques containing v. All graphs considered will be assumed to be connected. A set S ⊆ V (G) is a uv-separator if vertices u and v are in different connected components of G−S. It is minimal if no proper subset of S has the 1 Email: [email protected] aaURL: www.mate.unlp.edu.ar/~pdecaria 2 Email: [email protected] same property. S is a minimal vertex separator if there exist two nonadjacent vertices u and v such that S is a minimal uv-separator. S(G) will denote the family of all minimal vertex separators of G.
    [Show full text]
  • Graph Layout for Applications in Compiler Construction
    Theoretical Computer Science Theoretical Computer Science 2 I7 ( 1999) 175-2 I4 Graph layout for applications in compiler construction G. Sander * Abstract We address graph visualization from the viewpoint of compiler construction. Most data struc- tures in compilers are large, dense graphs such as annotated control flow graph, syntax trees. dependency graphs. Our main focus is the animation and interactive exploration of these graphs. Fast layout heuristics and powerful browsing methods are needed. We give a survey of layout heuristics for general directed and undirected graphs and present the browsing facilities that help to manage large structured graphs. @ l999-Elsevier Science B.V. All rights reserved Keyrror& Graph layout; Graph drawing; Compiler visualization: Force-directed placement; Hierarchical layout: Compound drawing; Fisheye view 1. Introduction We address graph visualization from the viewpoint of compiler construction. Draw- ings of compiler data structures such as syntax trees, control flow graphs, dependency graphs [63], are used for demonstration, debugging and documentation of compilers. In real-world compiler applications, such drawings cannot be produced manually because the graphs are automatically generated, large, often dense, and seldom planar. Graph layout algorithms help to produce drawings automatically: they calculate positions of nodes and edges of the graph in the plane. Our main focus is the animation and interactive exploration of compiler graphs. Thus. fast layout algorithms are required. Animations show the behaviour of an algorithm by a running sequence of drawings. Thus there is not much time to calculate a layout between two subsequent drawings. In interactive exploration, it is annoying if the user has to wait a long time for a layout.
    [Show full text]
  • Dominating Cliques in Graphs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 86 (1990) 101-116 101 North-Holland DOMINATING CLIQUES IN GRAPHS Margaret B. COZZENS Mathematics Department, Northeastern University, Boston, MA 02115, USA Laura L. KELLEHER Massachusetts Maritime Academy, USA Received 2 December 1988 A set of vertices is a dominating set in a graph if every vertex not in the dominating set is adjacent to one or more vertices in the dominating set. A dominating clique is a dominating set that induces a complete subgraph. Forbidden subgraph conditions sufficient to imply the existence of a dominating clique are given. For certain classes of graphs, a polynomial algorithm is given for finding a dominating clique. A forbidden subgraph characterization is given for a class of graphs that have a connected dominating set of size three. Introduction A set of vertices in a simple, undirected graph is a dominating set if every vertex in the graph which is not in the dominating set is adjacent to one or more vertices in the dominating set. The domination number of a graph G is the minimum number of vertices in a dominating set. Several types of dominating sets have been investigated, including independent dominating sets, total dominating sets, and connected dominating sets, each of which has a corresponding domination number. Dominating sets have applications in a variety of fields, including communication theory and political science. For more background on dominating sets see [3, 5, 151 and other articles in this issue. For arbitrary graphs, the problem of finding the size of a minimum dominating set in the graph is an NP-complete problem [9].
    [Show full text]
  • On Dasgupta's Hierarchical Clustering Objective and Its Relation to Other
    On Dasgupta's hierarchical clustering objective and its relation to other graph parameters Svein Høgemo1, Benjamin Bergougnoux1, Ulrik Brandes3, Christophe Paul2, and Jan Arne Telle1 1 Department of Informatics, University of Bergen, Norway 2 LIRMM, CNRS, Univ Montpellier, France 3 Social Networks Lab, ETH Z¨urich, Switzerland Abstract. The minimum height of vertex and edge partition trees are well-studied graph parameters known as, for instance, vertex and edge ranking number. While they are NP-hard to determine in general, linear- time algorithms exist for trees. Motivated by a correspondence with Das- gupta's objective for hierarchical clustering we consider the total rather than maximum depth of vertices as an alternative objective for mini- mization. For vertex partition trees this leads to a new parameter with a natural interpretation as a measure of robustness against vertex removal. As tools for the study of this family of parameters we show that they have similar recursive expressions and prove a binary tree rotation lemma. The new parameter is related to trivially perfect graph completion and there- fore intractable like the other three are known to be. We give polynomial- time algorithms for both total-depth variants on caterpillars and on trees with a bounded number of leaf neighbors. For general trees, we obtain a 2-approximation algorithm. 1 Introduction Clustering is a central problem in data mining and statistics. Although many objective functions have been proposed for (flat) partitions into clusters, hier- archical clustering has long been considered from the perspective of iterated merge (in agglomerative clustering) or split (in divisive clustering) operations.
    [Show full text]
  • PDF of the Phd Thesis
    Durham E-Theses Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs THOMAS, DANIEL,JAMES,RHYS How to cite: THOMAS, DANIEL,JAMES,RHYS (2020) Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireexive Graphs , Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13671/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas A Thesis presented for the degree of Doctor of Philosophy Department of Computer Science Durham University United Kingdom June 2020 Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs Daniel Thomas Submitted for the degree of Doctor of Philosophy June 2020 Abstract: In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdős, Ko and Rado to graphs.
    [Show full text]
  • The Bidimensionality Theory and Its Algorithmic
    The Bidimensionality Theory and Its Algorithmic Applications by MohammadTaghi Hajiaghayi B.S., Sharif University of Technology, 2000 M.S., University of Waterloo, 2001 Submitted to the Department of Mathematics in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2005 °c MohammadTaghi Hajiaghayi, 2005. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author.............................................................. Department of Mathematics April 29, 2005 Certi¯ed by. Erik D. Demaine Associate Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Rodolfo Ruben Rosales Chairman, Applied Mathematics Committee Accepted by . Pavel I. Etingof Chairman, Department Committee on Graduate Students 2 The Bidimensionality Theory and Its Algorithmic Applications by MohammadTaghi Hajiaghayi Submitted to the Department of Mathematics on April 29, 2005, in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Abstract Our newly developing theory of bidimensional graph problems provides general techniques for designing e±cient ¯xed-parameter algorithms and approximation algorithms for NP- hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k £ k grid graph (and similar graphs) grows with k, typically as ­(k2), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex- removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices).
    [Show full text]
  • Algorithms for Minimum M-Connected K-Tuple Dominating Set Problem$
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 381 (2007) 241–247 www.elsevier.com/locate/tcs Algorithms for minimum m-connected k-tuple dominating set problem$ Weiping Shanga,c,∗, Pengjun Wanb, Frances Yaoc, Xiaodong Hua a Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 10080, China b Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA c Department of Computer Science, City University of Hong Kong, Hong Kong Received 24 January 2007; received in revised form 25 April 2007; accepted 29 April 2007 Communicated by D.-Z. Du Abstract In wireless sensor networks, a virtual backbone has been proposed as the routing infrastructure to alleviate the broadcasting storm problem and perform some other tasks such as area monitoring. Previous work in this area has mainly focused on how to set up a small virtual backbone for high efficiency, which is modelled as the minimum Connected Dominating Set (CDS) problem. In this paper we consider how to establish a small virtual backbone to balance efficiency and fault tolerance. This problem can be formalized as the minimum m-connected k-tuple dominating set problem, which is a general version of minimum CDS problem with m = 1 and k = 1. We propose three centralized algorithms with small approximation ratios for small m and improve the current best results for small k. c 2007 Elsevier B.V. All rights reserved. Keywords: Connected dominating set; Approximation algorithm; k-vertex connectivity; Wireless sensor networks 1. Introduction A Wireless Sensor Network (WSN) consists of wireless nodes (transceivers) without any underlying physical infrastructure.
    [Show full text]