Biochemical Aspects Ofmercaptopurine Inhibition and Resistance*

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Aspects Ofmercaptopurine Inhibition and Resistance* Biochemical Aspects of Mercaptopurine Inhibition and Resistance* R. W. BROCKMAN (Kettering-Meyer Laboratory, Southern Research institute, Birmingham, Alabama) SUMMARY The observed effects of 6-mercaptopurine on purmne synthesis de novo can be at tributed to inhibition by 6-mercaptopurmne ribonucleotide of phosphoribosylamine synthesis. Azaserine-induced accumulation of@ formyiglycinamide ribonucleotide (FGAR) in human tumor cellsin culture was inhibitedby low concentrationsof 6- mercaptopurine and 6-thioguanine; such inhibition of FGAR accumulation did not occur in a mercaptopurmne-resistant subline that lacked inosinic and guanylic acid pyrophosphorylase activities, the enzyme system by which 6-mercaptopurmne ribo nucleotide and 6-thioguanylic acid are formed. Resistance to mercaptopurmne has been seen to be accompanied frequently by decrease or loss of these enzyme activities. Such loss of enzyme activity appears to be a genetically stable and heritable characteristic of resistant cells. Resistance to mercaptopurine by means other than loss of capacity for ribonucleotide formation is also evident. INTRODUCTION of the metabolism of mercaptopurine, mechanisms Elion and Hitchings (28) described the syn by which it inhibits nucleic acid synthesis, and thesis of 6-mercaptopurmne over a decade ago. mechanisms by which biological systems may be Early reports of the inhibitory effects of mercapto come resistant to this analog. It is hoped that this purmne on microorganisms (29), experimental tu presentation may provide a framework for die mors (28), and mouse leukemias (48) were fol cussion, since aspects of the mechanisms of action lowed by extensive studies of the biological and of mercaptopurine and other purinethiols and of biochemical effects of this purine analog (56). resistance to these inhibitors are still under active investigation. Mercaptopurine is known to be metabolized by pathways of hypoxanthine metabolism and to METABOLISM OF MERCAPTOPURINE interfere with the synthesis and interconversion of Mercaptopurine closely follows the known purine nucleotides (see 1, 10, 11, 75). The analog pathways for the anabolism and catabolism of also suppresses immune responses (71). purine bases. The analog was oxidized to thiouric Considered in the present discussion are aspects acid by microorganisms and by mammalian cells S The experimental work reported herein was supported (20, 30, 52, 56). The rate of oxidation of mer by the Cancer Chemotherapy National Service Center, Na captopurine by milk xanthine oxidase was relative tional Cancer Institute, under the National Institutes of ly slow, and the analog was a competitive inhibi Health Contract No. SA-43-ph-2483, and by grants from the tor of xanthine oxidation (72). Mercaptopurine Charles F. Kettering Foundation and the Alfred P. Sloan Foundation. was metabolized to hypoxanthine and to purine The abbreviations used are those accepted as standard by nucleotides in microorganisms (4, 20) ; desulfuriza the Journal of BiOlOgical Chemistry with certain additions or tion also occurred in miceasindicated by sulfate. exceptions. Su excretion and labeling of nutleic acid adenine AMP, GMP, IMP: adenosine-, guanosine-, and inOSine-5'- monophosphates. and guanine from mercaptopurine-8-C'4 (56). 6- ATP, GTP, UTP, CTP: adenosine-, guanosine-, uridine Methylmercaptopurmne was identified as an excre and cytidine-5'-triphosphates. tion product of the metabolism of mercaptopurine @ dUTP: deoxyuridine-5'-triphosphate. (68). Chart 1 summarizessome of the known dTTP: thymidine-5'-triphosphate. pathways of metabolism of 6-inerciaptopurine.' PRPP: 5-phosphoribosyl-1-pyrophosphate. FGAR: formylglycinamide ribonudeotide. 1 Elion et aL considered catabolism of tbiopuzine In their @@@ MP: 6-mercaptopurine. contribution to this conference. :. 1191 Downloaded from cancerres.aacrjournals.org on September 23, 2021. © 1963 American Association for Cancer Research. 1192 Cancer Research Vol. 23, September 1963 Purine nucleoside phosphorylase was active for Carter (21) showed that mercaptopurine and the formation of mercaptopurine ribo- and deoxy hypoxanthine competed for a partially purified E. ribonucleosides (31, 81). Evidence that mercapto coli purine ribonucleotide pyrophosphorylase that purine inhibited inosine phosphorylase was oh was also active for guanine. Competition of mer tamed in E. coli (82) and in neoplasms grown in captopurmne and hypoxanthine for IMP pyrophos cell culture.2 Paterson (62) found that mercapto phorylase probably accounts for the observed in purine ribonucleoside was rapidly cleaved to the hibition of conversion of hypoxanthine to nucleo base by Ehrlich ascites cells, suggesting the action tides in microbial cells (13). The data summarized of purine nucleoside phosphorylase or hydrolase. in Table 1 show that in our studies the inhibition Kinase activity for inosine and mercaptopurine by mercaptopurine of nucleotide formation in S. ribonucleoside has not yet been demonstrated, al faecalis was specific for hypoxanthine and guanine though indirect evidence for its existence was oh under the experimental conditions used (see also tained in a study of the metabolism of inosine to [5]). Mercaptopurine was metabolized to the cor purine nucleotides in bacterial cells deficient in the responding ribonucleotide by mouse neoplasms capacity to metabolize hypoxanthine to IMP. and other tissues in vivo, but no evidence for the Anobotism NP ribonucleoside @ phosphory,@@@@ pyrophosphorylas ‘...(kinose) @ 6-Mercaptopurins @.—.—& NP rsbonucleottde I' 1/ ‘:ii Inosinic polyphosphotcc acid polynucleotides Co tabolism zanthins zanthine @ midase oxidase @ 6-Nercaptopurine 6-thioxonthins 6-thiouric acid L__,@6-methylmercaptopurine @ sulfate; hypoxanthin.;anabolic and catabolic products of purine metabolism Ca4ur 1.—Metabolism of 6-mercaptepurine in rim SH ®-OCH2 SH formation of the ribonucleoside di- and triphos + PPi phates was obtained in these studies (9, 60). How c:x + ever, Way et al. (85) obtained indirect spectro photometric evidence for further phosphorylation of mercaptopurine ribonucleoside-5'-phosphate by pork kidney enzyme preparations. OH OH Some radioactivity from mercaptopurine-S36 CHART 2.—Enzymatic synthesis of 6-mercaptopurine ribo and from mercaptopurine-8-C'4 was incorporated nucleotide by reaction of the base with 5-phosphoribosyl-1- into the nucleic acid fraction isolated from mouse pyrophosphate. tissues (7, 56), but unequivocal evidence of in corporation of the analog as the nucleotide, and From the results obtained it appeared that MP thus as an integral part of the nucleic acid chain, resistant Streptococcus faeca& (SF/MP) utilized has not yet been presented. No evidence was oh inosine for nucleotide formation equally as well as tamed for incorporation of mercaptopurmne into did the parent sensitive strain (SF/0).3 the nucleic acids of microorganisms (20) or of Mercaptopurine, like natural purine bases, was mouse leukemia cells in vivo (9) or in cell culture converted to the nucleotide by enzyme-catalyzed (16)@Hansenet at. (38, 39) observedthat radio reaction with 5-phosphoribosyl-1-pyrophosphate activity from mercaptopurmne-S35 associated with (PRPP) (53, 86) (Chart 2). ribonucleic acids was significantly decreased by 3 G. P. Wheeler and B. Bowden (personal communication, treatment of the nucleic acid fraction with hydro 1962). gen sulfide. This was so whether the tracer was ad 3B.W.Brockman,P.Chambers,C.S.Debavadi(unpub ministered in vivo and the nucleic acid subsequent lished observations). ly isolated or whether ribonucleic acid was directly Downloaded from cancerres.aacrjournals.org on September 23, 2021. © 1963 American Association for Cancer Research. BROCKMAN—ASpecIS of Mercaptopurine Inhibition and Resistance 1193 exposed to mercaptopurine-S35 in vitro. Certain cursors such as formate, glycine, carbon dioxide, metal ions increased the radioactivity associated and ammonium salts (see [38]). Gots (83) showed with the nucleic acid fraction. Thus, some of the that exogenous purines, particularly adenine and mercaptopurine associated with the nucleic acid hypoxanthine, inhibited the accumulation of 5- fraction may be nonspecifically bound. amino-4-imidazolecarboxamide ribonucleoside in Anomalous nucleotides are known to be enzy a purine-requiring mutant, Escherichia coli B-96. matically incorporated into polynucleotides. For In a subsequent study with an adenine-requiring example, bromodeoxyuridine-5'-triphosphate and mutant it appeared that adenine, or adenine con dUTP can substitute for dTTP, and deoxyinosine geners, specifically prevented the formation of .5'-triphosphate can partially substitute for dGTP aminoimidazolecarboxamide derivatives (84) . Hen as substrates for DNA polymerase (6). Similarly, derson (41) observed that natural purine bases and .5-ribosyl-UTP, thymine ribonucleoside-5'-triphos nucleosides inhibited azaserine-induced formyl phate, 5-fiuorouridine-5'-triphosphate, and 5-bro TABLE 1 mouridine-.5'-triphosphate substitute completely or partially for UTP as substrates for microbial EFFECT OF MERCAPTOPURINE ON THE UTTL@ATION OF RNA polymerase; azaguanosine-5'-triphosphate EXOGENOUS PURINES FOR NUCLEOTIDE FORMA and inosine-5'-triphosphate also substitute partial TION BY Streptococcus faecaiis ly for GTP as substrates for this enzyme (44). Mercaptopurine nucleotides have not yet been re NUcLEOTTDESt IN TEE ported to be substrates for DNA or RNA poly FRACTIONCouut,/sec;SOLUBLE merase. Carbon (19) studied mercaptopurine ribo mercaptopurine-treated
Recommended publications
  • Nucleotide Degradation
    Nucleotide Degradation Nucleotide Degradation The Digestion Pathway • Ingestion of food always includes nucleic acids. • As you know from BI 421, the low pH of the stomach does not affect the polymer. • In the duodenum, zymogens are converted to nucleases and the nucleotides are converted to nucleosides by non-specific phosphatases or nucleotidases. nucleases • Only the non-ionic nucleosides are taken & phospho- diesterases up in the villi of the small intestine. Duodenum Non-specific phosphatases • In the cell, the first step is the release of nucleosides) the ribose sugar, most effectively done by a non-specific nucleoside phosphorylase to give ribose 1-phosphate (Rib1P) and the free bases. • Most ingested nucleic acids are degraded to Rib1P, purines, and pyrimidines. 1 Nucleotide Degradation: Overview Fate of Nucleic Acids: Once broken down to the nitrogenous bases they are either: Nucleotides 1. Salvaged for recycling into new nucleic acids (most cells; from internal, Pi not ingested, nucleic Nucleosides acids). Purine Nucleoside Pi aD-Rib 1-P (or Rib) 2. Oxidized (primarily in the Phosphorylase & intestine and liver) by first aD-dRib 1-P (or dRib) converting to nucleosides, Bases then to –Uric Acid (purines) –Acetyl-CoA & Purine & Pyrimidine Oxidation succinyl-CoA Salvage Pathway (pyrimidines) The Salvage Pathways are in competition with the de novo biosynthetic pathways, and are both ANABOLISM Nucleotide Degradation Catabolism of Purines Nucleotides: Nucleosides: Bases: 1. Dephosphorylation (via 5’-nucleotidase) 2. Deamination and hydrolysis of ribose lead to production of xanthine. 3. Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase. Spiders and other arachnids lack xanthine oxidase.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Stimulating Effects of Inosine, Uridine and Glutamine on the Tissue Distribution of Radioactive D-Leucine in Tumor Bearing Mice
    RADIOISOTOPES, 33, 7376 (1984) Note Stimulating Effects of Inosine, Uridine and Glutamine on the Tissue Distribution of Radioactive D-leucine in Tumor Bearing Mice Rensuke GOTO, Atsushi TAKEDA, Osamu TAMEMASA, James E. CHANEY* and George A. DIGENIS* Division of Radiobiochemistry and Radiopharmacology, Shizuoka College of Pharmacy 2-1, Oshika 2-chome, Shizuoka-shi 422, Japan * Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy, University of Kentucky Lexington, Kentucky 40506, U.S.A. Received September 16, 1983 This experiment was carried out in search for stimulators of the in vivo uptake of D- and L-leucine by tumor and pancreas for the possible application to 7-emitter labeled amino acids in nuclear medical diagnosis. Inosine, uridine, and glutamine which are stimulators of the in vitro incorporation of radioactive L-amino acids into some tumor cells significantly enhanced the uptake of D-leucine into the pancreas, while in Ehrlich solid tumor only a little if any in- crease was observed. Of the compounds tested inosine showed the highest stimulation of pan- creas uptake in the range of doses used, resulting in the best pancreas-to-liver concentration ratio, a factor of significant consideration for pancreas imaging. The uptake of L-leucine by the tumor and pancreas was little affected by these compounds. Key Words: inosine, uridine, glutamine, tissue distribution, radioactive D-leucine, tumor bearing mice, pancreas imaging cine, and L-alanine into Ehrlich or Krebs ascites 1. Introduction carcinoma cells resulting from treatment with High radioactivity uptake of some radioactive inosine, uridine, or glutamine. These findings D-amino acids by the tumor and pancreas of suggest that these compounds might bring about tumor-bearing animalsl' '2) or by the pancreas of the increased in vivo uptake of amino acids.
    [Show full text]
  • Nucleotide Metabolism
    NUCLEOTIDE METABOLISM General Overview • Structure of Nucleotides Pentoses Purines and Pyrimidines Nucleosides Nucleotides • De Novo Purine Nucleotide Synthesis PRPP synthesis 5-Phosphoribosylamine synthesis IMP synthesis Inhibitors of purine synthesis Synthesis of AMP and GMP from IMP Synthesis of NDP and NTP from NMP • Salvage pathways for purines • Degradation of purine nucleotides • Pyrimidine synthesis Carbamoyl phosphate synthesisOrotik asit sentezi • Pirimidin nükleotitlerinin yıkımı • Ribonükleotitlerin deoksiribonükleotitlere dönüşümü Basic functions of nucleotides • They are precursors of DNA and RNA. • They are the sources of activated intermediates in lipid and protein synthesis (UDP-glucose→glycogen, S-adenosylmathionine as methyl donor) • They are structural components of coenzymes (NAD(P)+, FAD, and CoA). • They act as second messengers (cAMP, cGMP). • They play important role in carrying energy (ATP, etc). • They play regulatory roles in various pathways by activating or inhibiting key enzymes. Structures of Nucleotides • Nucleotides are composed of 1) A pentose monosaccharide (ribose or deoxyribose) 2) A nitrogenous base (purine or pyrimidine) 3) One, two or three phosphate groups. Pentoses 1.Ribose 2.Deoxyribose •Deoxyribonucleotides contain deoxyribose, while ribonucleotides contain ribose. •Ribose is produced in the pentose phosphate pathway. Ribonucleotide reductase converts ribonucleoside diphosphate deoxyribonucleotide. Nucleotide structure-Base 1.Purine 2.Pyrimidine •Adenine and guanine, which take part in the structure
    [Show full text]
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation
    Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. X Jin, … , B R Duling, J Linden J Clin Invest. 1997;100(11):2849-2857. https://doi.org/10.1172/JCI119833. Research Article We investigated the mechanism by which inosine, a metabolite of adenosine that accumulates to > 1 mM levels in ischemic tissues, triggers mast cell degranulation. Inosine was found to do the following: (a) compete for [125I]N6- aminobenzyladenosine binding to recombinant rat A3 adenosine receptors (A3AR) with an IC50 of 25+/-6 microM; (b) not bind to A1 or A2A ARs; (c) bind to newly identified A3ARs in guinea pig lung (IC50 = 15+/-4 microM); (d) lower cyclic AMP in HEK-293 cells expressing rat A3ARs (ED50 = 12+/-5 microM); (e) stimulate RBL-2H3 rat mast-like cell degranulation (ED50 = 2.3+/-0.9 microM); and (f) cause mast cell-dependent constriction of hamster cheek pouch arterioles that is attenuated by A3AR blockade. Inosine differs from adenosine in not activating A2AARs that dilate vascular smooth muscle and inhibit mast cell degranulation. The A3 selectivity of inosine may explain why it elicits a monophasic arteriolar constrictor response distinct from the multiphasic dilator/constrictor response to adenosine. Nucleoside accumulation and an increase in the ratio of inosine to adenosine may provide a physiologic stimulus for mast cell degranulation in ischemic or inflamed tissues. Find the latest version: https://jci.me/119833/pdf Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation Xiaowei Jin,* Rebecca K. Shepherd,‡ Brian R. Duling,‡ and Joel Linden‡§ *Department of Biochemistry, ‡Department of Molecular Physiology and Biological Physics, and §Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908 Abstract Mast cells are found in the lung where they release media- tors that constrict bronchiolar smooth muscle.
    [Show full text]
  • United States Patent Office Patented Oct
    3,346,562 United States Patent Office Patented Oct. 10, 1967 2 3,346,562 cg METHOD FOR THE PRODUCTION OF PO-CE Base RBONUCLEOSDE-5'-PHOSPHATE / O Mikio Honjo, Takatsuki, and Ryuji Maremoto, Minoo, Cl EO Japan, assignors to Takeda Chemical industries, Ltd., Osaka, Japan No Drawing. Filed May 31, 1966, Ser. No. 553,718 Claims priority, application Japan, May 29, 1965, R. X R. 40/31,814 9 Claims. (Cl. 260-21.5) HO. O. BIO O 10 N1 N1 This invention is concerned with a method for the pro Po-H, Base Po-H, Base duction of ribonucleoside-5'-phosphate. EIO k" wE+ EO k". Ribonucleoside-5'-phosphate is very useful as condi H HO - ment for food and also in the pharmaceutical industry, O O OH OH and has been chemically produced by at first protecting 15 X the hydroxyl groups at the 2'- and 3'-positions of its ribose R1 R2 moiety with acyl or isopropylidene groups and then phos phorylating the 5'-hydroxyl group of the thus-protected RN compound with pentavalent phosphorus compound such C=O: aliphatic ketone or aromatic aldehyde as phosphorus pentachloride, phosphorus oxychloride, 20 R?2 etc., followed by removing the protecting groups. As "ribonucleoside' in the present method there are However, this hitherto-known method requires a long used those containing purine base such as adenosine, time (about 7 to about 30 hours) for completing the pro inosine, etc. or those containing pyrimidine base such as tection and phosphorylation, and therefore is not desirable uridine, cytidine, etc. As the aliphatic ketone having 3 from an industrial viewpoint.
    [Show full text]
  • Gout: a Low-Purine Diet Makes a Difference
    Patient HANDOUT Gout: A Low-Purine Diet Makes a Difference Gout occurs when high levels of uric acid in your blood cause crystals to form and build up around a joint. Your body produces uric acid when it breaks down purines. Purines occur naturally in your body, but you also get them from certain foods and drinks. By following a low-purine diet, you can help your body control the production of uric acid and lower your chances of having another gout attack. Purines are found in many healthy foods and drinks. The purpose of a low-purine diet is to lower the amount of purine that you consume each day. Avoid Beer High-Purine Foods Organ meats (e.g., liver, kidneys), bacon, veal, venison Anchovies, sardines, herring, scallops, mackerel Gravy (purines leach out of the meat during cooking so gravy made from drippings has a higher concentration of purines) Limit Moderate- Chicken, beef, pork, duck, crab, lobster, oysters, shrimp : 4-6 oz daily Purine Foods Liquor: Limit alcohol intake. There is evidence that risk of gout attack is directly related to level of alcohol consumption What Other Dietary Changes Can Help? • Choose low-fat or fat-free dairy products. Studies show that low- or non-fat milk and yogurt help reduce the chances of having a gout attack. • Drink plenty of fluids (especially water) which can help remove uric acid from your body. Avoid drinks sweetened with fructose such as soft drinks. • Eat more non-meat proteins such as legumes, nuts, seeds and eggs. • Eat more whole grains and fruits and vegetables and less refined carbohydrates, such as white bread and cakes.
    [Show full text]
  • Allopurinol Sodium) for Injection 500 Mg
    ALOPRIM® (allopurinol sodium) for Injection 500 mg [al'-ō-prĭm] For Intravenous Infusion Only Rx only DESCRIPTION: ALOPRIM (allopurinol sodium) for Injection is the brand name for allopurinol, a xanthine oxidase inhibitor. ALOPRIM (allopurinol sodium) for Injection is a sterile solution for intravenous infusion only. It is available in vials as the sterile lyophilized sodium salt of allopurinol equivalent to 500 mg of allopurinol. ALOPRIM (allopurinol sodium) for Injection contains no preservatives. The chemical name for allopurinol sodium is 1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin­ 4-one monosodium salt. It is a white amorphous mass with a molecular weight of 158.09 and molecular formula C5H3N4NaO. The structural formula is: The pKa of allopurinol sodium is 9.31. CLINICAL PHARMACOLOGY: Allopurinol acts on purine catabolism without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. The degree of this decrease is dose dependent. Allopurinol is a structural analogue of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analogue, oxypurinol (alloxanthine), which also is an inhibitor of xanthine oxidase. Reutilization of both hypoxanthine and xanthine for nucleotide and nucleic acid synthesis is markedly enhanced when their oxidations are inhibited by allopurinol and oxypurinol. This reutilization does not disrupt normal nucleic acid anabolism, however, because feedback inhibition is an integral part of purine biosynthesis.
    [Show full text]
  • Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts
    Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts David A. Goldthwait J Clin Invest. 1957;36(11):1572-1578. https://doi.org/10.1172/JCI103555. Research Article Find the latest version: https://jci.me/103555/pdf MECHANISMS OF SYNTHESIS OF PURINE NUCLEOTIDES IN HEART MUSCLE EXTRACTS1 BY DAVID A. GOLDTHWAIT2 (From the Departments of Biochemistry and Medicine, Western Reserve University, Cleveland, Ohio) (Submitted for publication February 18, 1957; accepted July 18, 1957) The key role of ATP, a purine nucleotide, in 4. Adenine or Hypoxanthine + PRPP -> AMP the conversion of chemical energy into mechanical or Inosinic Acid (IMP) + P-P. work by myocardial tissue is well established (1, The third mechanism of synthesis is through the 2). The requirement for purine nucleotides has phosphorylation of a purine nucleoside (8, 9): also been demonstrated in the multiple synthetic 5. Adenosine + ATP -, AMP + ADP. reactions which maintain all animal cells in the Several enzymatic mechanisms are known which steady state. Since the question immediately arises result in the degradation of purine nucleotides and whether the purine nucleotides are themselves in nucleosides. The deamination of adenylic acid is a steady state, in which their rates of synthesis well known (10): equal their rates of degradation, it seems reason- 6. AMP -* IMP + NH8. able to investigate first what mechanisms of syn- Non-specific phosphatases (11) as well as spe- thesis and degradation may be operative. cific 5'-nucleotidases (12) have been described At present, there are three known pathways for which result in dephosphorylation: the synthesis of purine nucleotides. The first is 7.
    [Show full text]
  • Calcium 5'-Ribonucleotides
    CALCIUM 5'-RIBONUCLEOTIDES Prepared at the 18th JECFA (1974), published in NMRS 54B (1975) and in FNP 52 (1992). Metals and arsenic specifications revised at the 57th JECFA (2001). An ADI ‘not specified’ was established at the 18th JECFA (1974). SYNONYMS Calcium ribonucleotides, INS No. 634 DEFINITION Chemical names (Mixture of) calcium inosine-5'-monophosphate and calcium guanosine-5'- monophosphate Chemical formula C10H11CaN4O8P · x H2O and C10H12CaN5O8P · x H2O Structural formula Calcium 5’-guanylate Calcium 5’-inosinate Assay Not less than 97% and not more than the equivalent of 102% of C10H11CaN4O8P and C10H12CaN5O8P, calculated on the anhydrous basis. The proportion of C10H11CaN4O8P or C10H12CaN5O8P to the sum of them is between 47% and 53%. DESCRIPTION Odourless, white or off-white crystals or powder FUNCTIONAL USES Flavour enhancer CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Sparingly soluble in water Test for ribose (Vol. 4) Passes test Test for organic phosphate Passes test (Vol. 4) Test 5 ml of a 1 in 2,000 solution Test for inosinic acid To 2 ml of a 1 in 2,000 solution add 2 ml of 10% hydrochloric acid and 0.1 g of zinc powder, heat in a water bath for 10 min, and filter. Cool the filtrate in ice water, add 1 ml of a 3 in 1,000 sodium nitrite solution, shake well, and allow to stand for 10 min. Add 1 ml of a 1 in 200 ammonium sulfamate solution, shake well, and allow to stand for 5 min. Add 1 ml of a 1 in 500 N-(1- naphthyl)-ethylenediamine dihydrochloride solution.
    [Show full text]