Sequence Stratigraphy, Depositional History, And

Total Page:16

File Type:pdf, Size:1020Kb

Sequence Stratigraphy, Depositional History, And SEQUENCE STRATIGRAPHY, DEPOSITIONAL HISTORY, AND HYDROCARBON POTENTIAL OF THE MANCOS SHALE, UINTA BASIN, UTAH by Andrew Donald McCauley A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science in Geology Department of Geology and Geophysics The University of Utah December 2013 Copyright © Andrew Donald McCauley 2013 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of _________________ Andrew Donald McCauley has been approved by the following supervisory committee members: Lauren P. Birgenheier , Chair 8/28/13 Date Approved Cari Johnson , Member 9/10/13 Date Approved Robert Ressetar , Member 8/28/13 Date Approved and by ____________________ John M. Bartley____________________ , Chair/Dean of the Department/College/School o f _____________Geology and Geophysics____________ and by David B. Kieda, Dean of The Graduate School. ABSTRACT The Mancos Shale, an organic-lean marine mudstone dominated by detrital quartz and clay, was deposited into the Upper Cretaceous Western Interior Seaway. It is a proven source rock with potential as a target for hydrocarbon production from horizontal drilling and hydraulic fracturing, but prospective reservoir target intervals from its 4,000 ft (1220 m) thickness must be identified and characterized. The distribution of lithofacies throughout the Mancos has not previously been studied in detail, so this formation remains undifferentiated and the relationship with paleodepositional up- and downdip strata undefined. Previous core-based analysis has provided a depositional and sequence stratigraphic framework for predicting the distribution of lithofacies in the Mancos. However, a unified, basin-wide facies and sequence stratigraphic correlation which tests existing outcrop and core-based models is lacking. 157 wireline logs were chronostratigraphically correlated across the basin to build a regional subsurface map and cross sections that highlight stacking patterns, regional facies relationships, stratal architecture, and sequence stratigraphy within a depositional framework. A sequence stratigraphic model is established for the Mancos Shale, which incorporates seminal outcrop-based models from strata of central Utah, Mancos core, and stacking patterns identified from wireline log data. The Mancos thickens to the north and west, matching regional trends of tectonically driven subsidence, the most significant control on accommodation. The Mancos Shale consists of 29 4th order T-R cycles, which can be stacked to form four 3rd order cycles and a single 2nd order cycle. Whereas the stacking patterns of 2nd and 3rd order cycles are consistent across the basin, suggesting allocyclic control, 4th order cycles are more variable, influenced by both allocyclic and autocyclic controls. Deposition of the Mancos evolved from a low gradient ramp, to a deeper water basin, which was then infilled by basin-floor fans. Two organic-rich facies associations, each corresponding to transgressive and early highstand sequence sets, heterolithic facies of the Juana Lopez and lowermost Blue Gate (FA1) and sediment starved shelf deposits of the Lower Blue Gate (FA2) offer the most prospective intervals for unconventional hydrocarbon production. Preliminary petrophysical analysis and basin modeling corroborate this analysis. iv TABLE OF CONTENTS ABSTRACT............................................................................................................................ iii LIST OF FIGURES.............................................................................................................. vii ACKNOWLEDGEMENTS.................................................................................................. ix Chapter 1 TRANSGRESSIVE-REGRESSIVE CYCLES IN THE MANCOS SHALE, UINTA BASIN, U TAH................................................................................................... 1 Abstract.....................................................................................................................................1 Introduction.............................................................................................................................. 3 Geologic Background.............................................................................................................6 Dataset.....................................................................................................................................14 Methods and Approach.........................................................................................................18 Results.....................................................................................................................................23 Discussion.............................................................................................................................. 33 Conclusions............................................................................................................................ 44 2 DEPOSITIONAL SEQUENCE STRATIGRAPHY AND HYDROCARBON POTENTIAL OF THE MANCOS SHALE, UINTA BASIN, UTAH ................... 47 Abstract...................................................................................................................................47 Introduction............................................................................................................................ 49 Geologic Background...........................................................................................................53 Dataset.....................................................................................................................................56 Methods and Approach.........................................................................................................60 Results.....................................................................................................................................63 Discussion.............................................................................................................................. 81 Conclusions.......................................................................................................................... 112 Appendices A WELL DATABASE.................................................................................................... 116 B REVISED LOWER MANCOS STRATIGRAPHY................................................143 REFERENCES................................................................................................................... 146 vi LIST OF FIGURES 1. Foreland basin schematic (modified from DeCelles and Giles, 1996)..................... 7 2. Paleogeographic map of western North America (modified from Blakey, 2013) ... 9 3. Generalized regional stratigraphy of the Western Interior Basin (modified from Kauffman, 1977)............................................................................................................ 10 4. Generalized lithostratigraphy of the Mancos Shale, Uinta Basin, U T.....................12 5. Basin-wide data distribution map with T-R cross section traces............................. 15 6. Gamma ray log and core analysis correlation.............................................................20 7. West-east T-R cycle cross section from southeastern Uinta Basin, U T ................. 24 8. West-east T-R cycle cross section from northeastern Uinta Basin, U T ................. 26 9. North-south T-R cycle cross section from eastern Uinta Basin, U T .......................28 10. Stacking pattern summary of Mancos Shale T-R cycles.......................................... 29 11. Relative sea level curve of Mancos Shale....................................................................36 12. Comparison of Upper Cretaceous records of sea level change and Mancos Shale Relative sea level (calibrated with Gradstein et al., 2012)............................. 38 13. Sevier foreland backstripping analysis and subsidence history (modified from Pang and Nummedal, 1995).......................................................................................... 42 14. Basin-wide data distribution map with regional cross section traces......................57 15. Type log, Mancos Shale.................................................................................................64 16. Outcrop photos from exposures of the Mancos Shale in the Uinta Basin..............67 17. Exposure of Mancos B, Prairie Canyon, C O ..............................................................69 18. Isopach Maps, Mancos Shale and Lower Blue Gate Member of the M ancos........70 19. Isopach Maps, Mancos B Member of the Mancos Shale.......................................... 72 20. West-east regional cross section of Mancos Shale facies variability and Sequence stratigraphic correlation................................................................................74 21. North-south regional cross section of Mancos Shale facies variability and sequence stratigraphic correlation.................................................................................75 22. Lower Mancos correlation cross section detail...........................................................78 23. Schematic illustration of FA1, FA2 and Mancos B deposition............................... 83 24. Paleogeographic maps of the study area during Mancos deposition.......................85 25. SEM images of Blue Gate Member facies association
Recommended publications
  • Geology of the Flathead Formation (Middle Cambrian) on the Perimeter
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1978 Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana Joel A. Degenstein University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Degenstein, Joel A., "Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana" (1978). Theses and Dissertations. 71. https://commons.und.edu/theses/71 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY OF THE FLATHEAD FORMATION (MIDDLE CAMBRIAN) ON THE PERIMETER OF THE BIGHORN BASIN, BEARTOOTH MOUNTAINS, AND LITTLE BELT MOUNTAINS IN WYOMING AND MONTANA by Joel A. Degenstein Bachelor of Science in Geology, University of North Dakota, 1976 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota GEOLCGY LIBl(ARY August lJnivenitJ of Ncrtb Dakoll 1978 / . , '"\'';'.ft. ',I l This Thesis submicted by Joel A, Degenstein in partial fulfill­ ment of the requirements for the Degree of :·Iast:er of Science from ci:te University of ?forth Dakota is hereby app:.-c,·ed by the Faculty Advisory Col!llllittee under whom the work has been done.
    [Show full text]
  • High-Resolution Correlation of the Upper Cretaceous Stratigraphy Between the Book Cliffs and the Western Henry Mountains Syncline, Utah, U.S.A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 5-2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. Drew L. Seymour University of Nebraska, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Seymour, Drew L., "HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A." (2012). Dissertations & Theses in Earth and Atmospheric Sciences. 88. http://digitalcommons.unl.edu/geoscidiss/88 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. By Drew L. Seymour A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Christopher R. Fielding Lincoln, NE May, 2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH. U.S.A. Drew L. Seymour, M.S.
    [Show full text]
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • GEOLOGY of the INTERMOUNTAIN WEST an Open-Access Journal of the Utah Geological Association
    GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 1 2014 The Major Pre-Mississippian Unconformity in Rock Canyon, Central Wasatch Range, Utah David L. Clark1,, Drew Derenthal2, Bart J. Kowallis2, and Scott M. Ritter2 1Department of Geosciences, University of Wisconsin, Madison, WI; [email protected] 2Department of Geological Sciences, Brigham Young University, Provo, UT © 2014 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected] GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 1 2014 Editors UGA Board Douglas A. Sprinkel 2014 President Grant Willis [email protected] 801.537.3355 Utah Geological Survey 2014 President-Elect April Abate [email protected] 801.538.5214 801.391.1977 2014 Program Chair Wayne Western [email protected] 801.538.5263 [email protected] 2014 Treasurer Scott Clark [email protected] 2014 Secretary Mike Hylland [email protected] 801.537.3382 2014 Past-President Craig Morgan [email protected] 801.537.3370 Bart J. Kowallis Brigham Young University 801.422.2467 UGA Committees [email protected] Education/Scholarship Loren Morton [email protected] 801.536.4262 Environmental Affairs Craig Eaton [email protected] 801.633.9396 Thomas C. Chidsey, Jr. Geologic Road Sign Terry Massoth [email protected] 801.541.6258 Historian Paul Anderson [email protected] 801.364.6613 Utah Geological Survey Public Education Paul Jewell [email protected] 801.581.6636 801.537.3364 Sandy Eldredge [email protected] 801.537.3325 [email protected] Publications Roger Bon [email protected] 801.942.0533 Publicity Paul Inkenbrandt [email protected] 801.537.3361 Steven Schamel Social/Recreation Roger Bon [email protected] 801.942.0533 GeoX Consulting, Inc.
    [Show full text]
  • Upper Cenomanian Foraminifers from the Southern Part of the San Juan Basin, New Mexico
    Upper Cenomanian Foraminifers from the Southern Part of the San Juan Basin, New Mexico U.S. GEOLOGICAL SURVEY BULLETIN 1808-N AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey Books and Open-File Reports Sales, Box 25286, Denver, CO 80225. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes. Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ ANCHORAGE, Alaska-4230 University Dr., Rm.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Mesaverde Group and Wasatch Formation - Piceance Basin, Colorado
    NONTRIBUTARY GROUNDWATER ASSESSMENT: MESAVERDE GROUP AND WASATCH FORMATION - PICEANCE BASIN, COLORADO Submitted to: OXY USA INC. AND OXY USA WTP LP Date: November 4, 2009 Norwest Corporation 950 South Cherry Street, Suite 800 Denver, CO 80246 Tel: (303) 782-0164 Fax: (303) 782-2560 Email [email protected] www.norwestcorp.com 004280 TABLE OF CONTENTS EXECUTIVE SUMMARY ..............................................................................................................1 1 INTRODUCTION.................................................................................................................1-1 2 CONCEPTUAL MODEL .....................................................................................................2-1 2.1 GEOLOGIC SETTING ....................................................................................................2-1 2.1.1 Mancos Shale ..............................................................................................2-1 2.1.2 Iles Formation ..............................................................................................2-2 2.1.3 Williams Fork Formation ..............................................................................2-2 2.1.4 Wasatch Formation......................................................................................2-3 2.2 HYDROLOGIC DATA .....................................................................................................2-3 3 HYDROLOGEOLOGIC PARAMETERS.............................................................................3-1
    [Show full text]
  • Newell C. Remington
    A HISTORY OF THE GILSONITE INDUSTRY by NEWELL C. REMINGTON m A HISTORY OF THE GILSONITE INDUSTRY by Newell C. Remington This paper was submitted by the author in unpublished form in April, 1959, to the Department of History, University of Utah, in partial fulfillment of the re­ quirements for a Master of Science Degree. Typed by Pauline Love and Lithographed by Robert L. Jensen Salt Lake City, Utah Digital Im age©2006, Newell C. Remington. All rights reserved. Copyright Newell C. Remington 1959 Manufactured in the United States of America Digital Im age©2006, Newell C. Remington. All rights reserved. DEDICATION --To the Indomitable miners who, with crude imple­ ments and disregard for hazards and physical discomfort, helped to develop a prosperous, modern gilsonite industry. Digital Im age©2006, Newell C. Remington. All rights reserved. PREFACE In 1957 the American Gilsonite Company opened a revolu­ tionary refinery near Grand Junction, Colorado, which had cost them $16,000,000 to build, and began reducing the gilsonite--a solid hydrocarbon--to high-grade gasoline and pure carbon-coke at the rate of about 700 tons per day. Just as incredible is the fact that gilsonite was and is conveyed from Bonanza, Utah, across the precipitous Book Cliffs to the refinery through a pipeline. The opening of this magnificent plant was eighty-eight years removed from the year 1869 when the blacksmith of the Whiterocks Indian Agency attempted to b u m gilsonite as coal in his forge with rather dreadful results. During the interval so many human events occurred in relation to gilsonite--a rare bitumen closely related to grahamite and glance pitch--that it was felt to be an adequate and deserving topic for thorough historical treatment.
    [Show full text]
  • Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range By Richard B. Powers, Editor1 Open-File Report 93-248 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1993 CONTENTS Introduction Richard B. Powers................................................................................................ 1 Commodities assessed.................................................................................................. 2 Areas of study.............................................................................................................. 2 Play discussion format................................................................................................. 5 Assessment procedures and methods........................................................................... 5 References cited........................................................................................................... 7 Glossary....................................................................................................................... 8 Region 3, Colorado Plateau and Basin and Range................................................................... 9 Geologic Framework
    [Show full text]
  • Big Oyster, Robust Echinoid: an Unusual Association from the Maastrichtian Type Area (Province of Limburg, Southern Netherlands)
    Swiss Journal of Palaeontology (2018) 137:357–361 https://doi.org/10.1007/s13358-018-0151-3 (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Big oyster, robust echinoid: an unusual association from the Maastrichtian type area (province of Limburg, southern Netherlands) 1,2 3 Stephen K. Donovan • John W. M. Jagt Received: 27 February 2018 / Accepted: 10 May 2018 / Published online: 1 June 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract Large, denuded tests of holasteroid echinoids were robust benthic islands in the Late Cretaceous seas of northwest Europe. A test of Hemipneustes striatoradiatus (Leske) from the Nekum Member (Maastricht Formation; upper Maastrichtian) of southern Limburg, the Netherlands, is encrusted by a large oyster, Pycnodonte (Phygraea) vesiculare (Lamarck). This specimen is a palaeoecological conundrum, at least in part. No other members of the same oyster spatfall attached to this test and survived. Indeed, only two other, much smaller bivalve shells, assignable to the same species, attached either then or somewhat later. The oyster, although large, could have grown to this size in a single season. The larval oyster cemented high on the test and this would have been advantageous initially, the young shell being elevated above sediment-laden bottom waters. However, as the oyster grew, the incurrent margin of the commissure would have grown closer to the sediment surface. Thus, the quality of the incurrent water probably deteriorated with time. Keywords Late Cretaceous Á Pycnodonte Á Hemipneustes Á Taphonomy Á Palaeoecology Introduction et al. 2013, 2017). Associations on holasteroid tests may be monospecific or nearly so, such as dense accumulations of Large holasteroid echinoids, such as the genera pits assigned to Oichnus Bromley, 1981 (see, for example, Echinocorys Leske, 1778, Cardiaster Forbes, 1850, and Donovan and Jagt 2002; Hammond and Donovan 2017; Hemipneustes Agassiz, 1836, in the Upper Cretaceous of Donovan et al.
    [Show full text]
  • Non-Proprietary Resume -- 1993
    PROFESSIONAL VITAE REX D. COLE, Ph.D., P.G. Professor of Geology Colorado Mesa University February, 2014 EDUCATION Ph.D. in Geology (1975) University of Utah, Salt Lake City, UT Advisors: Dr. M.D. Picard and Dr. M.L. Jensen B.S. in Geology (1970) Colorado State University, Fort Collins, CO A.S. in Geology (1968) Mesa College, Grand Junction, CO High School Diploma (1966) Delta High School, Delta, CO PROFESSIONAL REGISTRATION Registered Professional Geologist (Wyoming) since 1992; Number PG-463 PROFESSIONAL EXPERIENCE 2011- Professor of Geology; Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO; also Geology Program Coordinator from 2009-2013. 1999-11 Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO; also Geology Program Coordinator. 1995-99 Associate Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO. 1983-95 Sr. Advising Geologist; Unocal Corp., Production and Development Technology Group, Brea, CA. 1982- Consulting Geologist; R.D. Cole and Associates, Grand Junction, CO. 1980-82 Manager of Geotechnical Operations; Multi Mineral Corp., Grand Junction, CO. 1978-80 Staff Geoscientist IV; Bendix Field Engineering Corporation, Grand Junction, CO. 1975-77 Assistant Professor of Geology; Department of Geology, Southern Illinois University, Carbondale, IL. 1973-75 Exploration Geologist; American Smelting and Refining Company, Salt Lake City, UT (part time). 1970-73 Teaching Fellow and Research Assistant; Department of Geology and Geophysics, University of Utah, Salt Lake City, UT (academic months). 1971 Exploration Geologist; Inspiration Development Company, Spokane, WA (summer). 1970 Exploration Geologist; Duval Corporation, Salt Lake City, UT (summer).
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]