Understanding Fasteners

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Fasteners MABUILDINterialsG MAselectionterials UNDERSTANDING faSTENERS Fasteners are an essential building material for the industry, but do you know the difference between the various types of steel and stainless steel products? Used in the wrong place, they are not going to stand the test of time. By Zhengwei Li, BRANZ Corrosion Scientist asteners, such as bolts, nails and a homogeneous structure, and the interface Coating screws, are used in timber-framed between the coating and the steel substrate is construction to hold structural compon- sharp. The adhesion is governed by the surface Steel ents together and attach claddings cleaning process before plating. Coating Micro-structure of electroplated zinc coating on steel. The F interface between the coating and the steel substrate is sharp. to the frame. Holding power (withdrawal thickness typically ranges from 7–15 µm. resistance) and corrosion perform ance are Mechanical plating probably the most important concerns when Mechanical plating is a batch process carried out choosing fasteners. in a rotating drum. The steel part is tumbled in Coating Improperly specified fasteners can loosen a mixture of zinc dust, chemicals (promoter or Steel when timber shrinks and swells with moisture accelerator), glass beads and water. The coating cycling. Deterioration of fasteners from corrosion is impacted onto the steel surface by the cold Micro-structure of mechanically plated zinc coating on steel. not only weakens the fastener, but the chemicals welding of fine-powdered zinc particles through the generated by corrosion can also attack timber tumbling action. As a result, the coating consists η - Zn phase surrounding the fastener. This signif­icantly of flattened particles of zinc loosely bonded reduces the holding ability of the fastener-timber together. The adhesion of the zinc to the steel assembly. Corrosion resistance is particularly and zinc to zinc is weaker than the metallurgical ζ - FeZn13 phase important for fasteners in joints that are taken bond formed during hot-dip galvanis ing but is δ – FeZn10 phase apart and reassembled for maintenance. better than an electroplated coating. Coating γ – Fe3Zn10 phase thickness typically ranges from 5–70 µm. Steel 25 μm Range of metal fasteners Hot-DIP galvanising Fasteners used in building and construction are In hot-dip galvanising (HDG), items are Micro-structure of hot-dip galvanised zinc coating on steel. The made from metals including aluminium, brass, immersed into a molten zinc bath of 445–455°C zinc coating is integral with the underlying steel. copper, mild steel and stainless steel. for 3–6 minutes. The zinc coating produced Fasteners with zinc coatings are usually is integral with the underlying steel through of the electrochemical and mechanical processes. chosen when corrosion and staining resistance several hard iron-zinc alloy layers that are Localised failures are more likely, especially if are required. These coatings are applied onto overcoated with pure zinc. There is no real line of there are physical defects in the coating. fasteners by several processing techniques demarcation between the steel and the coating. Thickness alone doesn’t tell the whole story – electroplating, hot-dip galvanising and This gradual transition provides a metallurgical when comparing coatings – consider the mechanical plating. The structural properties bond. HDG coatings have excellent continuity amount of available zinc per unit volume. Hot- are different for each of these coatings, hence and uniformity, and any discontinuities are dip galvanised coatings have a higher density they react differently to their environment. readily visible as black spots. The coating has a with over 30% more zinc per unit volume than MILD STEEL dull and less smooth surface. Thick coatings of mechanically plated coatings and so should Mild steel, mainly made of iron, is the most 50–125 µm are attainable. offer about 30% better corrosion resistance widely used material. It has high formability, under identical service conditions. good tensile strength and a low cost. However, Hot-dip galvanised better Hot-dip galvanised coatings have a series mild steel fasteners are not durable outdoors. Corrosion of zinc is approximately linear between of iron-zinc alloy layers, while electroplated The inescapable fact is that iron in the presence mass loss and time. In other words, the service and mechanically plated coatings have a of oxygen and water will rust. life of a zinc coating usually increases in simpler homogeneous structure composed of Electroplating proportion to its thickness – a thicker coating pure zinc. The iron-zinc phases have a higher In electroplating, zinc coatings are applied by will last longer. Generally, electroplated and corrosion resistance than zinc in neutral and electrolysis in an electrolytic cell containing a mechanically plated zinc coatings have lower acidic environments. Also, without these hard solution of zinc salt and an electric current. thicknesses than hot-dip galvanised coatings. In abrasion-resistant iron-zinc alloy layers, more They have a bright and silvery appearance with addition, coatings on sharp edges, corners and structural defects (scratches or debonding) are a smooth surface. These smooth coatings have threads have lower thicknesses due to the nature likely to be introduced into the relatively soft 34 BUILD 117 April/May 2010 pure zinc layer when the fasteners are driven plating are significantly different in their structural in most atmospheres. AISI 316 is better still, into the timber. characteristics and corrosion performance. especially in marine environments due to its BRANZ tests have shown that mechanically Take care when buying fasteners – examine higher molybdenum content. plated nails are commonly inferior to hot-dip them to check they are the type needed. Common ferritic stainless steels for fasteners galvanised nails under identical conditions. are AISI 410, 416 and 431. AISI 430 and 430F Corrosion typically starts on edges and corners Stainless steel best choice are the best martensitic alloys for fasteners. where the coating is thinner. Although some Stainless steel is well known in industry for Ferritic and martensitic steels are mainly used accelerated tests are claimed to show that its excellent environmental stability. This for economic reasons and where corrosion electroplated zinc coatings have a comparable extraordinary characteristic is related to the resistance requirements are not too severe. corrosion resistance to hot-dip galvanised formation of a thin chromium-rich passive film Stainless steel fasteners are more durable coat ings, in use, it has been found that most on its surface when exposed to oxygen and than zinc-coated steel fasteners. Field testing fasteners with zinc plating will not provide water. Once formed, this film can largely inhibit carried out at BRANZ’s Judgeford site confirmed adequate corrosion protection in long-term reactions between the metallic substrate and that bolts, nails and screws made of AISI 304 external exposures. This is supported by the environment, resulting in a reaction rate that and 316 stainless steel showed very little degrad- AS 3566: Self-drilling screws for the building is several orders of magnitude lower. ation even in timbers treated with ACQ and CuAz and construction industries, that states screws DIFFERENT stainless steels preservatives, known to be more corrosive than with electroplated zinc coatings (passivated) of Stainless steels for fasteners can be divided CCA (see page 37). Stainless steel fasteners <12 µm thick should only be used in internal into three main categories: austenitic, ferritic also reduce the possibility of staining. and dry areas. and martensitic. These steels have different Lower cost over LIFETIME phase structures and compositions and so have The material cost for stainless steel fasteners Check what you are buying differing abilities to form the passive film. might be high compared with hot-dip galvanised Fasteners with a zinc coating are often marked Austenitic stainless steels are non- fasteners. However, the overall cost of ownership ‘galvanised’. This is misleading, as galvanised im- hardenable, non-magnetic and offer the will generally be lower as a result of the reduced plies items coated by hot-dipping. Zinc coatings greatest degree of corrosion resistance. Typical inspection and maintenance needed to ensure produced by electroplating and mechan­­ical alloys are the 300 series. AISI 304 works well the fasteners are still sound. BUILD 117 April/May 2010 35.
Recommended publications
  • Surface Engineering of Specialty Steels
    ASM Handbook, Volume 5: Surface Engineering Copyright © 1994 ASM International® C.M. Cotell, J.A. Sprague, and F.A. Smidt, Jr., editors, p 762-775 All rights reserved. DOI: 10.1361/asmhba0001306 www.asminternational.org Surface Engineering of Specialty Steels J.R. Davis, Davis & Associates SPECIALTY STEELS encompass a broad P/M materials for structural parts are iron-copper- amount of admixed graphite and the composition range of ferrous alloys noted for their special carbon, iron-nickel-carbon, and iron-carbon. of the sintering atmosphere. processing characteristics (powder metallurgy al- Parts made from these materials respond to heat loys), corrosion resistance (stainless steels), wear treatment with a defined hardenability band. Iron Deburring P/M Parts (Ref 4) resistance and toughness (tool steels), high parts that are low in carbon and high in density strength (maraging steels), or magnetic properties can also be case hardened. Although cleaning and deburring generally are (electrical steels). Each of these material considered different operations, they are often groupsmwith the exception of stainless steels, Designation of Ferrous P/M Materials accomplished simultaneously. Therefore, much which were discussed in the previous article in of the discussion on deburring is applicable to the this Sectionmwill be reviewed below. Additional Ferrous P/M materials are customarily desig- subsequent section of this article on cleaning. information on these materials can be found in nated by the specifications or standards to which The inherent porosity in P/M parts demands Volumes 1 and 2 of the ASM Handbook. they are made, such as those listed in Table 1. special considerations in all secondary opera- Comparable standards are published by ASTM, tions.
    [Show full text]
  • AMS-QQ-P-416.Pdf
    00-P-41 6F i“October 1991 SUPERSEDING ~-P-416E 18 Aprtl 1986 FEDERAL SPECIFICATION PLATING, CADMIUM (ELECTRODEPOSITED) This specification has been approved by the Commissioner, Federal Supply Service, General Services Adminlstratlon, for use by all Federal Agencies. 1. SCOPE AND CLASSIFICATION 1.1 Scope. This specification covers the requirements for electro- deposited cadmium platlng. 1.2 Classification. Cadmium plating shall be of the following types and classes, as specified (see 6.2): 1.2.1 Types. I - As plated II - With supplementary chromate treatment (see 3.2.9.1) 111 - With supplementary phosphate treatment (see 3.2.9.2) 1.2.2 Classes. 1- 0.00050 inch minimum 2- 0.00030 inch minimum 3- 0.00020 Inch mlnlmum 2. APPLICABLE DOCUMENTS 2.1 Government documents. 2.1.1 Specifications and standards. The following specifications and standards form a part of this document to the extent specified here~n. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (0001SS) and supplement thereto, cited in the solicitation (see 6.2). Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use In improving this document should be addressed to: Naval Air Engineering Center, Systems Engineering and Standardization Department (Code 5312), Lakehurst, NJ 08733-5100, by using the attached Standardization Document Improvement Proposal (DD Form 1426), or by letter. AhiSC N/A AREA MFFP OISTRIEHJTION STATEMENT A. Approved
    [Show full text]
  • Download the Table of Contents
    contents Chapter 1 introduction 1 1.1 introduction 1 Chapter 2 Wear and friction properties of surfaces 7 2.1 introduction 7 2.2 abrasive Wear 9 2.2.1 low -stress scrAtching AbrAsion 10 2.2.2 high-stress grinding AbrAsion 11 2.2.3 gouging AbrAsion 12 2.3 adhesive Wear 12 2.4 case study: solid lubricants and triboloGical characterisation hereof 16 2.4.1 block-on-ring test for solid lubricAnts 17 2.4.2 fAlex pin And vee block test for solid lubricAnts 19 2.5 fatiGue Wear 21 2.6 corrosive Wear 22 2.6.1 cAse study: fretting 23 2.7 erosive Wear 27 2.8 references 33 2.9 recommended additional readinG 33 2.10 relevant standards 33 Chapter 3 introduction to corrosion 37 3.1 introduction 37 3.2 the pourbaix diaGram 48 3.3 strateGies for corrosion protection 52 3.3.1 conversion coAtings As corrosion protection 52 3.3.2 AdditionAl corrosion protection strAtegies 55 3.4 typical appearance of surface corrosion 56 3.4.1 uniform corrosion 57 3.4.2 gAlvAnic corrosion 61 3.4.3 crevice or deposit corrosion 63 3.4.4 fretting corrosion 68 3.5 recommended additional readinG 69 IX ◆ Part1.indb 9 21/04/13 21.28 Advanced Surface Technology Chapter 4 basic electrochemistry for surface modifications 71 Chapter 6 Guidelines for electro-chemical deposition 149 4.1 introduction 71 6.1 introduction 149 4.2 basic electrolytic processes 72 6.2 material distribution and Geometry 149 4.2.1 hydrAtion of the metAl ion 72 6.2.1 types of overpotentiAl (polArizAtion types) 149 4.2.2 dissociAtion of the solution 73 6.2.2 optimizing mAteriAl distribution 151 4.2.3 interAction
    [Show full text]
  • Fundamentals of Heat Treating and Plating
    SEMINARS FOR ENGINEERS Fundamentals of Heat Treating and Plating Fasteners and Other Small Components About the Seminar: Benefits of Attending This two-day seminar was developed for engineers and technical Gain an understanding of what is occurring when a fastener is heat treated personnel to gain a high level, broad understanding of why and Become familiar with the common heat treating processes how fasteners and other similar items are heat treated and plated for fasteners or coated. The demands on today’s fasteners are ever increasing Understand when to specify specific processes or equipment and these two process steps play a critical role in how well the Recognize potential failures modes fastener will perform its intended function. Gain an understanding of the benefits of different platings and coating This seminar will begin by exploring the fundamental metallurgical Understand when to specify certain plating or coating pro- transformations and principals that yield the mechanical changes cesses desired by the fastener designer or engineer. Each process will Gain insight into plating and coating performance and rela- be examined in greater detail to understand how the process tive cost to achieve these goals achieves these underlying principals and what practical effects it Explore current issues in regulation and environmental protection has on the fastener. Control points will be investigated to gain an understanding of, not only how the process remains in control, but also how it can go wrong and the consequences when it does. Concepts Covered Day two will explore platings and coatings. There are a multitude Metallurgical transitions of good options today and this seminar shall look at those favored Hardenability by large fastener consuming industries.
    [Show full text]
  • Control Technology Assessment: Metal Plating and Cleaning Operations
    TECHNICAL REPORT Control Technology Assessment: Metal Plating and Cleaning Operations u.s. DEPARTMENT OF HeALHI AND HUMAN SERVICES Public Health Service centers for Disease Control National Institute for Occupational Safety and Health NIOSH TECHNICAL REPORT CONTROL TECHNOLOGY ASSESSMENT: METAL PLATING AND CLEANING OPERATIONS John W. Sheehy Vincent D. Mortimer James H. Jones Stephanie E. Spottswood U. S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering Cincinnati, Ohio 45226 December 1984 For aale by the Superi.ntendent of Documents. U.S. Government Printing Offlet', Washington, D.C. 20402 /-- ()." DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). DHHS (NIOSH) Publication No. 85-102 ii ABSTRACT A control technology assessment of electroplating and cleaning operations was conducted by the National Institute for Occupational Safety and Health (NIOSH). Walk-through surveys were conducted at about 30 electroplating plants and 9 in-depth studies at 8 plants. Air sampling and ventilation data and other control information were collected for 64 plating and cleaning tanks. Thirty-one of these were hard chrome plating tanks but cadmium, copper, nickel, silver, and zinc plating tanks were also evaluated. Acid, caustic and solvent cleaning tanks were also evaluated. Worker exposures were found to be controlled below existing and recommended standards. i11 CONTENTS ABSTRACT • iii ACKNOWLEDGEMENTS ix I. INTRODUCTION • 1 II. METAL PLATING INDUSTRY 3 Mechanical Processes 3 Bath Composition • 4 Cleaning Tanks 4 Electroplating Baths 6 III. HEALTH HAZARD ANALYSIS 11 Overview of Chromium Health Effects 11 Acids, Alkalies, and Solvents 16 Metals and Salts 18 IV.
    [Show full text]
  • MECHANICAL PLATING Tony Van Der Spuy Reports on a Visit to Team Plating Works
    MECHANICAL PLATING Tony van der Spuy reports on a visit to Team Plating Works Whilst mechanical plating may sound like an outdated concept from yesteryear, nothing could be further from the truth. It is regarded as an environmentally friendly process that is big in the USA and in Australia with demand continuing to grow. Given all of its advantages, it is odd that there is not more discussion about mechanical plating, or more companies that are offering the service. After all, a zinc coating that does not contribute to hydrogen embrittlement, that coats far more evenly than electroplating and that can produce attractive coatings from 10 µm up to 75 µm thick certainly deserves some consideration. The process is known by various names. Peen plating is one of the more common alternatives, but impact plating is yet another description. The term mechanical galvanizing is also used when the coatings are in excess of 25 µm. So far the only company providing this method of coating that has come to SAMFA’s attention is commercial jobbing shop Team Plating Works situated in Germiston, Gauteng. Managed by Father and Son, Tony and Gary Joseph, this business joined SAMFA’s ranks as a member in May 2010. Their pre- dominant line is barrel zinc plating. Members who attended the AGMs in Gauteng or KZN will recall that Tony Joseph addressed the audience at these events. He is currently the vice chairman of the South African Electroplating Association, a SEIFSA aligned body established specifically to represent the interests of metal finishers at the Metal Industries Tony Joseph (left) in discussion with KZN Chairperson, Mark Wright, at the AGM in Bargaining Council.
    [Show full text]
  • Kalpakjian 20
    Surface Treatments Coatings, and Cleaning 34.I Introduction 973 1 The preceding chapters have described methods of producing desired shapes 34.2 Mechanical Surface from a Wide variety of materials; although material and process selection is Treatments 974 very important, often the surface properties of a component determine its 34.3 Mechanical Plating performance or commercial success. and Cladding 976 34.4 Case Hardeningand ' This chapter describes various surfacefinishing operations thatcan be performed Hard Facing 976 for technical and aesthetic reasons subsequent to manufacturing a part. 34.5 Thermal Spraying 977 34.6 Vapor Deposition 979 ° The chapter presents the surface treatment, cleaning, and coating processes 34.7 Ion lmplantation and that are commonly performed and includes a discussion of mechanical surface Diffusion Coating 982 treatments such as shot peening, laser peening, and roller burnishing, with the 34.8 LaserTreatments 982 benefit of imparting compressive residual stresses onto metal surfaces. 34.9 Electroplating, Electroless Plating, ° Coating operations are then examined, including cladding, thermal spray and Electroforming 983 operations, physical and chemical vapor deposition, ion implantation, and 34.l0 Conversion Coatings 986 electroplating. 34.I! Hot Dipping 987 34.l2 Porcelain Enameling; ° The benefits of diamond and diamond-like carbon coatings are also investigated. Ceramic and Organic ° Finally, surface-texturing, painting, and cleaning operations are described. Coatings 988 34.I3 Diamond Coating and Diamond-like
    [Show full text]
  • Preliminary Review of the Metal Finishing Category; April 2018
    United472B States Environmental473B Protection 474BAgency Preliminary270B Review of the Metal Finishing Category April 2018 THIS PAGE INTENTIONALLY LEFT BLANK. U.S. Environmental Protection Agency Office of Water (4303T) 1200 Pennsylvani a Avenue, NW Washington, DC 20460 EPA 821-R-18-003 www.epa.gov/eg/metal-finishing-effluent-guidelines THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents TABLE OF CONTENTS Page 1. INTRODUCTION ................................................................................................................ 1-1 2. SUMMARY OF 2015 STATUS REPORT .............................................................................. 2-1 2.1 Existing Metal Finishing ELGs ............................................................................. 2-1 2.2 2015 Status Report Summary of Findings ............................................................. 2-3 3. RECENT STUDY ACTIVITIES ............................................................................................ 3-1 3.1 Site Visits to Metal Finishing Facilities ................................................................. 3-1 3.2 Discharge Monitoring Report (DMR) and Toxics Release Inventory (TRI) Data Analysis ....................................................................................................... 3-1 3.3 Pollution Prevention (P2) Review ......................................................................... 3-5 3.4 Metal Products and Machinery (MP&M) Rulemaking ......................................... 3-6 3.5 Technical Conferences
    [Show full text]
  • Mechanical Plating - the Forté of Plating Systems & Technologies
    Mechanical Plating - The Forté of Plating Systems & Technologies With the ever-increasing concerns about commodity of mechanical energy on surfaces, whether the surface prices, environmental issues and impending global reg- is a car roof, or one’s own head. More to the point, the ulatory regimes, many of the mainstay metal fi nishing whole fi eld of mechanical fi nishing, including abrasive processes have been subject to scrutiny. Some efforts blasting, shot peening, vibratory fi nishing, etc., relies on consider whether a popular process can survive all of mechanical energy to impart a desired surface fi nish on this inquiry. Others consider the possibility that technol- an article. ogy which exists, but may not have been in the forefront Originally developed in the 1950s, mechanical plat- for a while, deserves a second look. Mechanical plating ing is another means of depositing ductile metals - zinc, is one of those, and the leading supplier of mechanical tin, copper, gold, silver, indium, cadmium, lead and plating chemistry to job shops, with the largest share alloys/mixtures thereof - onto substrate metals, par- of the North American market, is Plating Systems & ticularly steel. Done in a rotating barrel, the parts to be Technologies (PS&T), Inc., in Jackson, Michigan. plated are immersed in a water slurry containing: MacDermid Industrial Solutions Division, in • the coating metal in the form of fi ne particles, 3 to 20 Waterbury, CT and Atotech USA, in Rock Hill, SC are µm in size, also signifi cant suppliers to this market on a worldwide • spherical glass beads to do the mechanical work, with basis.
    [Show full text]
  • Silver and Gold Coating
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Gold & Silver Coatings By A . T . Kakhia 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Part One General Knowledge 3 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 4 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Aqua Regia ( Royal Acid ) Freshly prepared aqua regia is colorless, Freshly prepared aqua but it turns orange within seconds. Here, regia to remove metal fresh aqua regia has been added to these salt deposits. NMR tubes to remove all traces of organic material. Contents 1 Introduction 2 Applications 3 Chemistry 3.1 Dissolving gold 3.2 Dissolving platinum 3.3 Reaction with tin 3.4 Decomposition of aqua regia 4 History 1 - Introduction Aqua regia ( Latin and Ancient Italian , lit. "royal water"), aqua regis ( Latin, lit. "king's water") , or nitro – hydro chloric acid is a highly corrosive mixture of acids, a fuming yellow or red solution. The mixture is formed by freshly mixing concentrated nitric acid and hydro chloric acid , optimally in a volume ratio of 1:3. It was named 5 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org so because it can dissolve the so - called royal or noble metals, gold and platinum. However, titanium, iridium, ruthenium, tantalum, osmium, rhodium and a few other metals are capable of with standing its corrosive properties. IUPAC name Nitric acid hydro chloride Other names aqua regia , Nitro hydrochloric acid Molecular formula HNO3 + 3 H Cl Red , yellow or gold Appearance fuming liquid 3 Density 1.01–1.21 g / cm Melting point − 42 °C Boiling point 108 °C Solubility in water miscible in water Vapor pressure 21 mbar 2 – Applications Aqua regia is primarily used to produce chloro auric acid, the electrolyte in the Wohl will process.
    [Show full text]
  • Mechanical Plating. Electroplating Technology
    MECHANICAL PLATING. ELECTROPLATING TECHNOLOGY www.wocklum-group.com ELECTROPLATING TECHNOLOGY-RANGE Our GALVOTEC series offers you processing chemicals for almost all processes in the field of galvanisation. The GALVOTEC products are developed, produced and bottled by Wocklum Chemie at the Balve site. Pretreatment: Decorative techniques: + Decoction degreasing + Copper + Electrolytic degreasing + Nickel + Activation salts + Chrome + Pickling inhibitors + Tin-nickel Technical procedures: Follow up treatment: + Hard chrome + Passivations for zinc + Zinc + Sealer + Zinc-nickel + Passivations for silver + Chemical nickel Dyeing for different metals De-metallisation MECHANICAL PLATING CW-GALVOTEC activator MP 4 CW-GALVOTEC promotor MP4 is an etch degreaser which has successfully been is used as an activator in the mechanical plating used for years for the deoxidation and degreasing of process. Here, after copper plating (with our MP4 high-strength, high-carbon steels due to its highly- cleaner product) and before adding zinc powder to inhibiting properties. The dosing of the activator is the turning drum, promotor MP4 is added at a dosa- necessary if there is a heavy and oxide/scale layer ge of approx. 50 ml/m² of surface area to be coated. on the substrate. For this, activator B is added to the When zinc is first added, the addition of promotor coating bell in a concentration of approx. 50 ml/m² MP4 causes the so-called „zinc flash“. This is the of surface area to be coated. After the treatment, emergence of a thin adhesive layer which signifi- the liquid is decanted and the bell is rinsed with cantly improves the adhesion of the subsequently water once more and decanted.
    [Show full text]
  • Zinc Coatingscoatingscoatings
    ZINCZINCZINC COATINGSCOATINGSCOATINGS A Comparative Analysis of Process and Performance Characteristics Contents INTRODUCTION 1 BATCH HOT-DIP GALVANIZING 2 CONTINUOUS SHEET GALVANIZING 4 ZINC PAINTING 6 ZINC SPRAY METALLIZING 7 MECHANICAL PLATING 8 ELECTROGALVANIZING 9 ZINC PLATING 10 SELECTION OF ZINC COATINGS 10 CONCLUSION 11 ZINC COATINGS COMPARISON 12 ACKNOWLEDGEMENTS 13 30 65.4 © 2011 American Galvanizers Association. The material provided herein has been developed to provide accurate and authoritative information about after-fabrication hot-dip galvanized steel. This material provides general information only and is not intended as a substitute for competent professional examination and verification as to suitability and applicability. The information provided herein is not intended as a representation or warranty on the part of the AGA. Anyone making use of this information assumes all liability arising from such use. ZnZinc American Galvanizers Association INTRODUCTIONINTRODUCTIONINTRODUCTION Zinc, a natural, healthy, and abundant element was first higher on the list will become anodic and preferentially used in construction in 79 AD; thus, its characteristics corrode to protect metals lower in the series. Therefore, as a well-suited corrosion protective coating for iron zinc is anodic to steel and will sacrificially corrode to and steel products has long been known. The 27th most protect the underlying steel from corrosion. abundant element in the Earth’s crust, zinc is naturally There are a number of zinc coatings which are often present in rocks, soil, air, water, and the biosphere, as generically termed “galvanizing,” but each has unique well as in plants, animals, and humans. In fact, zinc is characteristics. These characteristics not only affect essential to life as all organisms require it to survive and applicability, but also economics and performance in complete normal physiological functions.
    [Show full text]