Zinc and Cadmium Coatings, MFSA MEMBERSHIP ROSTER

Total Page:16

File Type:pdf, Size:1020Kb

Zinc and Cadmium Coatings, MFSA MEMBERSHIP ROSTER - , ! CONTENTS i INTRODUCTION INTRODUCTION. .................................... 1-3 1 i The Metal Finishing Suppliers’ Association, Inc. is a DESIGN FOR PLATING ............................... .3-10 i trade association of companies and individuals engaged ! in providing the metal fishing industry with the SELECTING THE FINISH ............................. .lo-17 equipment, products and supplies used by that indus- ti try. A primary objective of the Association, as stated SPECIFYING THE FINISH. ............................ .18-24 in its Bylaws, is to promote the interest and further Y .............................. I the welfare of its members and their customers while ZINC ALLOY PLATING .24-29 safeguarding the interests of the ultimate consumer. The Association, along with other groups in the industry, has long realized TESTING THE FINISH ............................... .29-32 that the public, the industrial buyer and the designer are not too well inform- GLOSSARY OF METAL FINISHING TERMS. ............... .33-34 ed about metal finishingnor how to specify high quality coatings. When metal products are sold which are inadequately finished for long service life the re- SOURCES OF INFORMATION. ........................... .‘34 sult is harmful to all. Sales are retarded and competition by nonmetallic mat- erials is promoted. TABLES In 1960 the MFSA initiated action to upgrade the durability of metal finishes I. Suggested Standards for Quality Zinc Coatings on Iron &Steel Products. ........................... .19 in a continuing program known as the “Quality Metal Finishing Project” or 11. Suggested Standards for Quality Cadmium Coatings on the “QMF”. Its programs are aimed at: Iron & Steel Products. ........................ .20 1. Promoting the use of technically sound specifications or standards 111. Expected Protection ........................... .21 in cooperation with interested trade and technical societies. IV. Published Specifications for Zinc Coatings on Steel ........22 V. Published Specifications for Mechanical Zinc Coatings ..... .22 2. Providing useful information to both producers and buyers of VI. Published Specifications for Cadmium Coatings on Steel. ... .23 electroplated products through the medium of metal finishing VII. Published Specifications for Mechanical Cadmium Coatings. .23 clinics in the larger industrial centers. b VIII. Published Specifications for Mechanical Coatings of 3. Providing printed guides on established standards and specifica- CadmiumTin ............................... 23 ~. tions in condensed form readily usuable by the design engineer, IX. Zinc-Iron. .................................. .25 purchasing agent and others concerned with metal finishing. X. Zinc-Cobalt ................................. .26 XI. Protection. ................................. .27 The present volume, the second in the series, like the fust is a guide to the XII. Typical Bath Composition. ....................... .28 application of established standards to achieve a quality metal finish. Whereas XIII. Typical Bath Parameters Comparison .........~ ....... .28 the first deals with copper-nickel-chromium finishes, the second presents in- formation on standards for electrodeposited zinc and cadmium coatings, MFSA MEMBERSHIP ROSTER. ........................... .37 i mechanically deposited zinc, zinc alloys, cadmium and cadmium-tin, as well 1 as chromate conversion coatings. In the decade of the ~O’S,QMF Guides on 1 MASS FINISHING and TIN and TIN ALLOY COATINGS were written and I printed to further demonstrate our devotion to Quality; ELECTROLESS i NICKEL was added in the ’80s. One reason for the concem of the MFSA that high quality shall be achieved is that it is usually impossible to rate the quality of finished metal products by I appearance alone. A coating which will preserve the eye appeal and utility of a metal article throughout its expected life may look exactly like one that is 1 Obviously, an industry can afford to pay more for improved quality of given article than the amount spent on repair or replacement of defecti units produced at an inferior quality level. Every unit which does not seI out its expected life with acceptable appearance and performance is a star ing advertisement against further sales of the part. Good management aims build in the right amount and kind of high quality which is needed to guara tee the expected or promised service of the unit. What management needs to know is how this quality level can be achieve how it should be specified for a given service and how to control the relea of products to insure that they meet the standards. At the same time manag ment must be confident that this know-how is based on sound engmeeri principles yet does not incorporate an excessive factor of safety. DESIGN FOR PLATING Illustration A - Zinc plated steel shop truck Swivel wifh Olive drab chromate coating. The program to improve and control the quality of a metal product shou: not thick enough to prevent premature rusting when the part is put into ser- start at the desk of the designer. Basic principles of mechanical finishing ar vice. electroplating impose important restrictions on the sue and shape of camp, Much testing and evaluation had to be done to provide the technical daia nents. The desi~ershould know enough about these principles so that he cz required before standard specifications could be written for electroplated fin- design to minimize costs of quality fqshing while planning products whic ishes. The American Society for Testing and Materials, the American Electro- will have a long service life. Metal finishing processes are at least as cor platers and Surface Finishers Society, the National Bureau of Standards and plicated as metal stamping, casting or forging with which the designer many industrial laboratories all have carried out such programs for many usually more familiar. Proper selection of finishes and processes offers man years. opportunities to improve quality, reduce wsts, and increase productiol ASTM Designation B-507 can provide the designer with helpful information. The QMF Project evaluates the status of existing and proposed quality stand- ards, selects those that are supported by technically sound data, relates the specified quality level to various kinds and degrees of severity of service and Significant Surfaces then disseminates the information to those in industry who can and should A most important term used when specifying metal fmishes is “significan use it. In addition QMF provides information which can be used by producers surface” because on many products the same standard of quality is not re to make it easier or less expensive to meet the standards. For example, it may quired at all points on the surface. The significant surfaces can be defined a be better to change to a different finish rather than incur the expense of up those normally visible directly or by reflection which are essential to th, grading a current one. It may be more desirable to alter a design detail which appearance or serviceabiity of the article or which, if they are a source o would facilitate application of a more uniform finish thereby lowering cost. corrosion products, can alter the appearance or performance of visible SUI faces. Significant surfaces preferably should be agreed upon between pur Quality chaser and manufacturer and should be indicated on drawings. Furthennor( points at which thickness measurements are to be made should be identified. How much is quality worth? 2 i Design for Barrel Processing (Electroplate or Mechanical Plate) Metal parts which are to be zinc or cadmium plated do not ordinarily require polishing with belts or wheels before plating. Those to be cleaned or smooth- ened are often treated by barrel finishing or tumbling or other vibrating pr& cesses. In designing to improve quality, consideration should be given to cer- tain rules applicable to such processing, whether this be surface preparation or barrel plating: li bvoid blind holes, recesses and joint crevices which can retain tumbling compounds and metal debris. Y Avoid intricate surface patterns which will be blurred by barrel finishing. 0 Parts must be sturdy enough to withstand the multiple impacts of barrel rotation. 0 Small flat parts which tend to nest together should be provided with ridges or dimples to prevent this. Design for good entry and drainage of solutions during rotation by using simple shapes. 0 Significant surfaces must be exterior for barrel work in order to undergo proper mechanical preparation and cleaning or to receive their share of metal deposit. They should be convex, if possible, rather than recessed. Design for Racking, Draining and Air Entrapment There are design considerations other than the above for parts which are to be Avoid shapes which can trap air on entry into a processing tank if mounted on racks for processing in cleaning and electroplating tanks. Among this air can prevent access of solutions to areas requiring treat- them are the following: ment. Wherever air can be trapped, hydrogen or oxygen may also accumulate during cleaning and plating. 0 Products which would occupy a volume in processing tanks large in proportion to surface area should be designed to be plated in Design for Good Distribution of Electrodeposits sections for assembly after coating. The most important factor determining the quality of a coating on metal parts 0 Consult the plating department to make certain that parts can be is its thickness on significant surfaces. Fundamental laws of
Recommended publications
  • Surface Engineering of Specialty Steels
    ASM Handbook, Volume 5: Surface Engineering Copyright © 1994 ASM International® C.M. Cotell, J.A. Sprague, and F.A. Smidt, Jr., editors, p 762-775 All rights reserved. DOI: 10.1361/asmhba0001306 www.asminternational.org Surface Engineering of Specialty Steels J.R. Davis, Davis & Associates SPECIALTY STEELS encompass a broad P/M materials for structural parts are iron-copper- amount of admixed graphite and the composition range of ferrous alloys noted for their special carbon, iron-nickel-carbon, and iron-carbon. of the sintering atmosphere. processing characteristics (powder metallurgy al- Parts made from these materials respond to heat loys), corrosion resistance (stainless steels), wear treatment with a defined hardenability band. Iron Deburring P/M Parts (Ref 4) resistance and toughness (tool steels), high parts that are low in carbon and high in density strength (maraging steels), or magnetic properties can also be case hardened. Although cleaning and deburring generally are (electrical steels). Each of these material considered different operations, they are often groupsmwith the exception of stainless steels, Designation of Ferrous P/M Materials accomplished simultaneously. Therefore, much which were discussed in the previous article in of the discussion on deburring is applicable to the this Sectionmwill be reviewed below. Additional Ferrous P/M materials are customarily desig- subsequent section of this article on cleaning. information on these materials can be found in nated by the specifications or standards to which The inherent porosity in P/M parts demands Volumes 1 and 2 of the ASM Handbook. they are made, such as those listed in Table 1. special considerations in all secondary opera- Comparable standards are published by ASTM, tions.
    [Show full text]
  • AMS-QQ-P-416.Pdf
    00-P-41 6F i“October 1991 SUPERSEDING ~-P-416E 18 Aprtl 1986 FEDERAL SPECIFICATION PLATING, CADMIUM (ELECTRODEPOSITED) This specification has been approved by the Commissioner, Federal Supply Service, General Services Adminlstratlon, for use by all Federal Agencies. 1. SCOPE AND CLASSIFICATION 1.1 Scope. This specification covers the requirements for electro- deposited cadmium platlng. 1.2 Classification. Cadmium plating shall be of the following types and classes, as specified (see 6.2): 1.2.1 Types. I - As plated II - With supplementary chromate treatment (see 3.2.9.1) 111 - With supplementary phosphate treatment (see 3.2.9.2) 1.2.2 Classes. 1- 0.00050 inch minimum 2- 0.00030 inch minimum 3- 0.00020 Inch mlnlmum 2. APPLICABLE DOCUMENTS 2.1 Government documents. 2.1.1 Specifications and standards. The following specifications and standards form a part of this document to the extent specified here~n. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (0001SS) and supplement thereto, cited in the solicitation (see 6.2). Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use In improving this document should be addressed to: Naval Air Engineering Center, Systems Engineering and Standardization Department (Code 5312), Lakehurst, NJ 08733-5100, by using the attached Standardization Document Improvement Proposal (DD Form 1426), or by letter. AhiSC N/A AREA MFFP OISTRIEHJTION STATEMENT A. Approved
    [Show full text]
  • Download the Table of Contents
    contents Chapter 1 introduction 1 1.1 introduction 1 Chapter 2 Wear and friction properties of surfaces 7 2.1 introduction 7 2.2 abrasive Wear 9 2.2.1 low -stress scrAtching AbrAsion 10 2.2.2 high-stress grinding AbrAsion 11 2.2.3 gouging AbrAsion 12 2.3 adhesive Wear 12 2.4 case study: solid lubricants and triboloGical characterisation hereof 16 2.4.1 block-on-ring test for solid lubricAnts 17 2.4.2 fAlex pin And vee block test for solid lubricAnts 19 2.5 fatiGue Wear 21 2.6 corrosive Wear 22 2.6.1 cAse study: fretting 23 2.7 erosive Wear 27 2.8 references 33 2.9 recommended additional readinG 33 2.10 relevant standards 33 Chapter 3 introduction to corrosion 37 3.1 introduction 37 3.2 the pourbaix diaGram 48 3.3 strateGies for corrosion protection 52 3.3.1 conversion coAtings As corrosion protection 52 3.3.2 AdditionAl corrosion protection strAtegies 55 3.4 typical appearance of surface corrosion 56 3.4.1 uniform corrosion 57 3.4.2 gAlvAnic corrosion 61 3.4.3 crevice or deposit corrosion 63 3.4.4 fretting corrosion 68 3.5 recommended additional readinG 69 IX ◆ Part1.indb 9 21/04/13 21.28 Advanced Surface Technology Chapter 4 basic electrochemistry for surface modifications 71 Chapter 6 Guidelines for electro-chemical deposition 149 4.1 introduction 71 6.1 introduction 149 4.2 basic electrolytic processes 72 6.2 material distribution and Geometry 149 4.2.1 hydrAtion of the metAl ion 72 6.2.1 types of overpotentiAl (polArizAtion types) 149 4.2.2 dissociAtion of the solution 73 6.2.2 optimizing mAteriAl distribution 151 4.2.3 interAction
    [Show full text]
  • Fundamentals of Heat Treating and Plating
    SEMINARS FOR ENGINEERS Fundamentals of Heat Treating and Plating Fasteners and Other Small Components About the Seminar: Benefits of Attending This two-day seminar was developed for engineers and technical Gain an understanding of what is occurring when a fastener is heat treated personnel to gain a high level, broad understanding of why and Become familiar with the common heat treating processes how fasteners and other similar items are heat treated and plated for fasteners or coated. The demands on today’s fasteners are ever increasing Understand when to specify specific processes or equipment and these two process steps play a critical role in how well the Recognize potential failures modes fastener will perform its intended function. Gain an understanding of the benefits of different platings and coating This seminar will begin by exploring the fundamental metallurgical Understand when to specify certain plating or coating pro- transformations and principals that yield the mechanical changes cesses desired by the fastener designer or engineer. Each process will Gain insight into plating and coating performance and rela- be examined in greater detail to understand how the process tive cost to achieve these goals achieves these underlying principals and what practical effects it Explore current issues in regulation and environmental protection has on the fastener. Control points will be investigated to gain an understanding of, not only how the process remains in control, but also how it can go wrong and the consequences when it does. Concepts Covered Day two will explore platings and coatings. There are a multitude Metallurgical transitions of good options today and this seminar shall look at those favored Hardenability by large fastener consuming industries.
    [Show full text]
  • Understanding Fasteners
    MABUILDINterialsG MAselectionterials UNDERSTANDING faSTENERS Fasteners are an essential building material for the industry, but do you know the difference between the various types of steel and stainless steel products? Used in the wrong place, they are not going to stand the test of time. By Zhengwei Li, BRANZ Corrosion Scientist asteners, such as bolts, nails and a homogeneous structure, and the interface Coating screws, are used in timber-framed between the coating and the steel substrate is construction to hold structural compon- sharp. The adhesion is governed by the surface Steel ents together and attach claddings cleaning process before plating. Coating Micro-structure of electroplated zinc coating on steel. The F interface between the coating and the steel substrate is sharp. to the frame. Holding power (withdrawal thickness typically ranges from 7–15 µm. resistance) and corrosion perform ance are Mechanical plating probably the most important concerns when Mechanical plating is a batch process carried out choosing fasteners. in a rotating drum. The steel part is tumbled in Coating Improperly specified fasteners can loosen a mixture of zinc dust, chemicals (promoter or Steel when timber shrinks and swells with moisture accelerator), glass beads and water. The coating cycling. Deterioration of fasteners from corrosion is impacted onto the steel surface by the cold Micro-structure of mechanically plated zinc coating on steel. not only weakens the fastener, but the chemicals welding of fine-powdered zinc particles through the generated by corrosion can also attack timber tumbling action. As a result, the coating consists η - Zn phase surrounding the fastener. This signif­icantly of flattened particles of zinc loosely bonded reduces the holding ability of the fastener-timber together.
    [Show full text]
  • Control Technology Assessment: Metal Plating and Cleaning Operations
    TECHNICAL REPORT Control Technology Assessment: Metal Plating and Cleaning Operations u.s. DEPARTMENT OF HeALHI AND HUMAN SERVICES Public Health Service centers for Disease Control National Institute for Occupational Safety and Health NIOSH TECHNICAL REPORT CONTROL TECHNOLOGY ASSESSMENT: METAL PLATING AND CLEANING OPERATIONS John W. Sheehy Vincent D. Mortimer James H. Jones Stephanie E. Spottswood U. S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering Cincinnati, Ohio 45226 December 1984 For aale by the Superi.ntendent of Documents. U.S. Government Printing Offlet', Washington, D.C. 20402 /-- ()." DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). DHHS (NIOSH) Publication No. 85-102 ii ABSTRACT A control technology assessment of electroplating and cleaning operations was conducted by the National Institute for Occupational Safety and Health (NIOSH). Walk-through surveys were conducted at about 30 electroplating plants and 9 in-depth studies at 8 plants. Air sampling and ventilation data and other control information were collected for 64 plating and cleaning tanks. Thirty-one of these were hard chrome plating tanks but cadmium, copper, nickel, silver, and zinc plating tanks were also evaluated. Acid, caustic and solvent cleaning tanks were also evaluated. Worker exposures were found to be controlled below existing and recommended standards. i11 CONTENTS ABSTRACT • iii ACKNOWLEDGEMENTS ix I. INTRODUCTION • 1 II. METAL PLATING INDUSTRY 3 Mechanical Processes 3 Bath Composition • 4 Cleaning Tanks 4 Electroplating Baths 6 III. HEALTH HAZARD ANALYSIS 11 Overview of Chromium Health Effects 11 Acids, Alkalies, and Solvents 16 Metals and Salts 18 IV.
    [Show full text]
  • MECHANICAL PLATING Tony Van Der Spuy Reports on a Visit to Team Plating Works
    MECHANICAL PLATING Tony van der Spuy reports on a visit to Team Plating Works Whilst mechanical plating may sound like an outdated concept from yesteryear, nothing could be further from the truth. It is regarded as an environmentally friendly process that is big in the USA and in Australia with demand continuing to grow. Given all of its advantages, it is odd that there is not more discussion about mechanical plating, or more companies that are offering the service. After all, a zinc coating that does not contribute to hydrogen embrittlement, that coats far more evenly than electroplating and that can produce attractive coatings from 10 µm up to 75 µm thick certainly deserves some consideration. The process is known by various names. Peen plating is one of the more common alternatives, but impact plating is yet another description. The term mechanical galvanizing is also used when the coatings are in excess of 25 µm. So far the only company providing this method of coating that has come to SAMFA’s attention is commercial jobbing shop Team Plating Works situated in Germiston, Gauteng. Managed by Father and Son, Tony and Gary Joseph, this business joined SAMFA’s ranks as a member in May 2010. Their pre- dominant line is barrel zinc plating. Members who attended the AGMs in Gauteng or KZN will recall that Tony Joseph addressed the audience at these events. He is currently the vice chairman of the South African Electroplating Association, a SEIFSA aligned body established specifically to represent the interests of metal finishers at the Metal Industries Tony Joseph (left) in discussion with KZN Chairperson, Mark Wright, at the AGM in Bargaining Council.
    [Show full text]
  • Kalpakjian 20
    Surface Treatments Coatings, and Cleaning 34.I Introduction 973 1 The preceding chapters have described methods of producing desired shapes 34.2 Mechanical Surface from a Wide variety of materials; although material and process selection is Treatments 974 very important, often the surface properties of a component determine its 34.3 Mechanical Plating performance or commercial success. and Cladding 976 34.4 Case Hardeningand ' This chapter describes various surfacefinishing operations thatcan be performed Hard Facing 976 for technical and aesthetic reasons subsequent to manufacturing a part. 34.5 Thermal Spraying 977 34.6 Vapor Deposition 979 ° The chapter presents the surface treatment, cleaning, and coating processes 34.7 Ion lmplantation and that are commonly performed and includes a discussion of mechanical surface Diffusion Coating 982 treatments such as shot peening, laser peening, and roller burnishing, with the 34.8 LaserTreatments 982 benefit of imparting compressive residual stresses onto metal surfaces. 34.9 Electroplating, Electroless Plating, ° Coating operations are then examined, including cladding, thermal spray and Electroforming 983 operations, physical and chemical vapor deposition, ion implantation, and 34.l0 Conversion Coatings 986 electroplating. 34.I! Hot Dipping 987 34.l2 Porcelain Enameling; ° The benefits of diamond and diamond-like carbon coatings are also investigated. Ceramic and Organic ° Finally, surface-texturing, painting, and cleaning operations are described. Coatings 988 34.I3 Diamond Coating and Diamond-like
    [Show full text]
  • Preliminary Review of the Metal Finishing Category; April 2018
    United472B States Environmental473B Protection 474BAgency Preliminary270B Review of the Metal Finishing Category April 2018 THIS PAGE INTENTIONALLY LEFT BLANK. U.S. Environmental Protection Agency Office of Water (4303T) 1200 Pennsylvani a Avenue, NW Washington, DC 20460 EPA 821-R-18-003 www.epa.gov/eg/metal-finishing-effluent-guidelines THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents TABLE OF CONTENTS Page 1. INTRODUCTION ................................................................................................................ 1-1 2. SUMMARY OF 2015 STATUS REPORT .............................................................................. 2-1 2.1 Existing Metal Finishing ELGs ............................................................................. 2-1 2.2 2015 Status Report Summary of Findings ............................................................. 2-3 3. RECENT STUDY ACTIVITIES ............................................................................................ 3-1 3.1 Site Visits to Metal Finishing Facilities ................................................................. 3-1 3.2 Discharge Monitoring Report (DMR) and Toxics Release Inventory (TRI) Data Analysis ....................................................................................................... 3-1 3.3 Pollution Prevention (P2) Review ......................................................................... 3-5 3.4 Metal Products and Machinery (MP&M) Rulemaking ......................................... 3-6 3.5 Technical Conferences
    [Show full text]
  • Mechanical Plating - the Forté of Plating Systems & Technologies
    Mechanical Plating - The Forté of Plating Systems & Technologies With the ever-increasing concerns about commodity of mechanical energy on surfaces, whether the surface prices, environmental issues and impending global reg- is a car roof, or one’s own head. More to the point, the ulatory regimes, many of the mainstay metal fi nishing whole fi eld of mechanical fi nishing, including abrasive processes have been subject to scrutiny. Some efforts blasting, shot peening, vibratory fi nishing, etc., relies on consider whether a popular process can survive all of mechanical energy to impart a desired surface fi nish on this inquiry. Others consider the possibility that technol- an article. ogy which exists, but may not have been in the forefront Originally developed in the 1950s, mechanical plat- for a while, deserves a second look. Mechanical plating ing is another means of depositing ductile metals - zinc, is one of those, and the leading supplier of mechanical tin, copper, gold, silver, indium, cadmium, lead and plating chemistry to job shops, with the largest share alloys/mixtures thereof - onto substrate metals, par- of the North American market, is Plating Systems & ticularly steel. Done in a rotating barrel, the parts to be Technologies (PS&T), Inc., in Jackson, Michigan. plated are immersed in a water slurry containing: MacDermid Industrial Solutions Division, in • the coating metal in the form of fi ne particles, 3 to 20 Waterbury, CT and Atotech USA, in Rock Hill, SC are µm in size, also signifi cant suppliers to this market on a worldwide • spherical glass beads to do the mechanical work, with basis.
    [Show full text]
  • Silver and Gold Coating
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Gold & Silver Coatings By A . T . Kakhia 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Part One General Knowledge 3 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 4 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Aqua Regia ( Royal Acid ) Freshly prepared aqua regia is colorless, Freshly prepared aqua but it turns orange within seconds. Here, regia to remove metal fresh aqua regia has been added to these salt deposits. NMR tubes to remove all traces of organic material. Contents 1 Introduction 2 Applications 3 Chemistry 3.1 Dissolving gold 3.2 Dissolving platinum 3.3 Reaction with tin 3.4 Decomposition of aqua regia 4 History 1 - Introduction Aqua regia ( Latin and Ancient Italian , lit. "royal water"), aqua regis ( Latin, lit. "king's water") , or nitro – hydro chloric acid is a highly corrosive mixture of acids, a fuming yellow or red solution. The mixture is formed by freshly mixing concentrated nitric acid and hydro chloric acid , optimally in a volume ratio of 1:3. It was named 5 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org so because it can dissolve the so - called royal or noble metals, gold and platinum. However, titanium, iridium, ruthenium, tantalum, osmium, rhodium and a few other metals are capable of with standing its corrosive properties. IUPAC name Nitric acid hydro chloride Other names aqua regia , Nitro hydrochloric acid Molecular formula HNO3 + 3 H Cl Red , yellow or gold Appearance fuming liquid 3 Density 1.01–1.21 g / cm Melting point − 42 °C Boiling point 108 °C Solubility in water miscible in water Vapor pressure 21 mbar 2 – Applications Aqua regia is primarily used to produce chloro auric acid, the electrolyte in the Wohl will process.
    [Show full text]
  • Mechanical Plating. Electroplating Technology
    MECHANICAL PLATING. ELECTROPLATING TECHNOLOGY www.wocklum-group.com ELECTROPLATING TECHNOLOGY-RANGE Our GALVOTEC series offers you processing chemicals for almost all processes in the field of galvanisation. The GALVOTEC products are developed, produced and bottled by Wocklum Chemie at the Balve site. Pretreatment: Decorative techniques: + Decoction degreasing + Copper + Electrolytic degreasing + Nickel + Activation salts + Chrome + Pickling inhibitors + Tin-nickel Technical procedures: Follow up treatment: + Hard chrome + Passivations for zinc + Zinc + Sealer + Zinc-nickel + Passivations for silver + Chemical nickel Dyeing for different metals De-metallisation MECHANICAL PLATING CW-GALVOTEC activator MP 4 CW-GALVOTEC promotor MP4 is an etch degreaser which has successfully been is used as an activator in the mechanical plating used for years for the deoxidation and degreasing of process. Here, after copper plating (with our MP4 high-strength, high-carbon steels due to its highly- cleaner product) and before adding zinc powder to inhibiting properties. The dosing of the activator is the turning drum, promotor MP4 is added at a dosa- necessary if there is a heavy and oxide/scale layer ge of approx. 50 ml/m² of surface area to be coated. on the substrate. For this, activator B is added to the When zinc is first added, the addition of promotor coating bell in a concentration of approx. 50 ml/m² MP4 causes the so-called „zinc flash“. This is the of surface area to be coated. After the treatment, emergence of a thin adhesive layer which signifi- the liquid is decanted and the bell is rinsed with cantly improves the adhesion of the subsequently water once more and decanted.
    [Show full text]