Biodiversity Bugs Pests: an Ecological Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Bugs Pests: an Ecological Perspective Session 1: BIODIVERSITY, BIOSECURITY AND CONSERVATION STRATEGIES S1-LP-01 Biodiversity bugs pests: An ecological perspective N. K. KRISHNA KUMAR* Bioversity International, NASC Complex, DPS Marg, Pusa Complex, New Delhi - 110012, India *Corresponding author E-mail: [email protected] Chemicals pesticides, once a panacea for pest control, of late are at the receiving end for everything that is environmentally unacceptable. Is solution the problem? The paradox cannot be brushed under the carpet. Problems of insect pests assuming an economic status is predominantly, a reflection of a disturbed ecosystem. Monoculture replacing crop diversity, indiscriminate application of fertilizer and weedicides eliminating beneficial microarthropods and microorganisms, pesticides eliminating beneficial arthropods, predators, parasitoids, reptiles and birds up the food web has all contributed to pests and diseases assuming alarming proportion. In a way ‘Silent Spring’, a book so relevant has been forgotten very much today. Short term benefit/cost ratio, maximizing economic returns and much focus in enhancing productivity at any cost without addressing long term soil, plant, and environmental health is detrimental to sustainable agriculture especially in the developing world. Self-sustaining ecosystems have fewer problems and agriculture should move in that direction. It appears that we are in between devil and deep sea. We can neither afford to reduce production and productivity nor food and nutritional security. But robust soil, water and plant health is a function of diversity at its best and is critical for sustainable agriculture. An ecological understanding of the complex interactions among, soil, water, plant, pollinators, pest, and natural enemies shall address our sustainable development goals without seriously compromising productivity. Future hinges more on a scientific understanding of agrobiodiversity to address today’s bugs. S1-LP-02 Biosystematics, biodiversity and biocontrol - relationships V. V. RAMAMURTHY* ICAR - Indian Agricultural Research Institute, Pusa Campus, New Delhi - 110012, India *Corresponding author E-mail: [email protected] Taxonomy is naming, identifying and classifying organisms. It is the real science behind the handling of living organisms. In the over three centuries, taxonomy does not lag behind, it has become more accumulative and rather inclusive. It contributes credibility and enables easy access. The material and knowledge components of biodiversity are elucidated with taxonomy. Biological control is an area where taxonomy provides the means of exploring diversity and harnessing it for mankind. In exploring more than one trophic interaction as in biological control, the credibility is with taxonomy. Biodiversity encompasses the genetic diversity to the species diversity and this cascading to the ecological diversity. Biological control to be meaningful needs credibility in all these and patterns and processes of nature. Thus, biodiversity is to be addressed in its entirety and at all its hierarchical levels simultaneously. Such addressing will demand integration of fundamentals in taxonomy, ecology and genetics. Harnessing biodiversity and its elements are more demanding now, especially with regard to insects and their associated biological resources, due to species complexes and complex species. The recent concept of push pull technology in agroecosystem is one that must be made relevant to biological control. It will be only if the biological diversity is addressed through a comprehensive approach integrating taxonomy. With recent evidence on the parasitic wasps as new champions of diversity over the beetles, there is tremendous scope for biological control. Its credibility will depend on the unraveling of relationships of taxonomy and biodiversity and channelize these for success. S1-LP-03 Pest management services through conservation of biological control agents: review, case studies and field experiences ABRAHAM VERGHESE1*, PRAKYA SREERAMA KUMAR2, S. DEVI THANGAM1, SENTHIL KUMAR RADHAKRISHNAN1, N. K. KRISHNA KUMAR3 and G. P. SHETTY1 1GPS Institute of Agricultural Management, #1, Techno Industrial Complex, Peenya First Stage, Peenya, Bengaluru - 560058, India 2ICAR - National Bureau of Agricultural Insect Resources, H. A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, Karnataka, India 3Bioversity International, NASC Complex, DPS Marg, Pusa Complex, New Delhi - 110012, India *Corresponding author E-mail: [email protected] Conservation biological control is an approach to enhance the efficacy of natural enemies by ensuring their availability in an agro-ecosystem on a long temporal scale. An increased survival often leads to better fecundity and improved behaviour of the natural enemies, which in turn ensures sustainable pest management. This paper, apart from being a concise review of conservation biological control, deals with selected India-specific case studies and field experiences on habitat manipulation and refugia. Results from a Bengaluru-based study during 2012-2015 on conservation biological control in an organic mango ecosystem are also presented. It also dwells briefly on conservation of insectivorous birds and touches upon conservation biocontrol with respect to entomopathogenic microorganisms and plant disease antagonists. S1-OP-01 Research to support New Zealand’s plant border biosecurity BARBARA BARRATT1* and DAVID A. J. TEULON2 1Invermay Agricultural Centre, Private Bag - 50034, Mosgiel - 9053, New Zealand 2Plant and Food Research, Lincoln, New Zealand *Corresponding author E-mail: [email protected] New Zealand has a very strong border biosecurity system to protect its borders from invasive plant pests, pathogens and weeds. As relatively isolated islands, New Zealand has defensible borders and we have been very successful in keeping out some very damaging and high impact pests despite increasing movements of commodities and tourists around the world. A research collaboration known as ‘Better Border Biosecurity (B3)’ has been developed between research agencies and end user organizations with the objective of reducing the rate of arrival and establishment of damaging and unwanted pests, pathogens and weeds of plants systems of economic and environmental significance. B3 has a number of international collaborators particularly in Australia, the USA, and one of our largest trading partners, China. The growing economy in India means that it also may become a significant trading partner and source of tourists, and hence a source of invasive species in the future. B3 focuses its work in 5 main research areas: risk assessment; pathway risk management; diagnostics; surveillance and eradication. Our research in these areas is planned and carried out in very close partnership with the government departments and increasingly industry sectors with responsibility for the security of our primary industries (agriculture, horticulture, and forestry), our natural environment, and the biosafety of deliberate introductions. This presentation will briefly outline some of our most innovative research approaches in each of the focus areas. S1-OP-02 Predatory and parasitic insects associated with the dubas bug in date palm orchards in Oman and relationship with insecticide application ALI ALWAHAIBI* College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box - 34, Alkhoadh P.C - 123, Sultanate of Oman *Corresponding author E-mail: [email protected] Dubas bug, Ommatissus lybicus Bergevin, is an important pest of date palm in Oman. Great efforts have been made to control this pest mostly through the use of insecticides. We conducted studies to determine the potential natural enemies of this important pest and to assess the effect of insecticide applications in 15 selected sites. Arthropod samples were collected from date palm orchards via surveys conducted during two periods in 2009-2012 and in 2015-2017. Samples were collected by beating date palm leaves and sweeping the understory vegetation. Soil samples were collected from under the trees, and then arthropods were extracted from these samples by Berlese traps. Above-ground and soil arthropods were sorted to different groups and counted. Date palm fronds were collected and egg parasitism was assessed in leaflets and interleaflet areas. Two parasitic wasps fed on dubas bug eggs, while one parasitic wasp attacked the nymphs and adults. Predators confirmed to feed on the dubas bug included ten unidentified predatory species belonging to the Aranae, Mantodea, Neuroptera, Hymenoptera, and Coleoptera. Abundance of natural enemies such as anthocorid bugs, ladybird beetles, ants was lower in sprayed than in unsprayed sites. Species richness of some predatory insect groups (anthocorids, ladybird beetles, and lacewings) was lower in sprayed sites than in unsprayed sites. Higher plant diversity and density could be an important factor influencing the abundance and diversity of natural enemies among different sites. S1-OP-03 Invasive alien plant species in Nepal PRAMOD KUMAR JHA*, SEERJANA MAHARJAN, ANJU SHARMA POUDEL and MOHAN SIWAKOTI Tribhuvan University, Kirtipur - 44600, Kathmandu, Nepal *Corresponding author E-mail: [email protected] Invasion by alien plant species has been increasing in Nepal at an alarming rate. A few Invasive Alien Plants (IAPs) have threatened the structure and functions in tropical and temperate ecosystems like richness of native species, cover, soil properties, nutrient cycling, etc.
Recommended publications
  • 61 BAB V KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan Hasil
    BAB V KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan hasil penelitian, maka dapat disimpulkan bahwa: 1. Keanekaragaman serangga pengunjung bunga matahari berupa 28 spesies serangga pengunjung yang secara keseluruhan tergolong ke dalam 21 genus, 12 familia dan 5 ordo; dengan perbandingan jenis spesies yang paling dominan berasal dari ordo Hymenoptera yaitu 12 spesies, kemudian disusul oleh ordo Lepidoptera sebanyak 11 spesies, ordo Diptera sebanyak 3 spesies serta ordo Orthoptera dan Blattodea masing–masing 1 spesies. 2. Aktivitas serangga pengunjung bunga matahari. a. Aktivitas serangga pengunjung yang kehadirannya mengambil nektar dan serbuk sari, sebagian besar di ketahui berasal dari genus Amegilla , Xylocopa , Ceratina , Apis , Trigona , Megachile dan kelompok ordo Diptera. b. Aktivitas serangga pengunjung yang kehadirannya mengambil nektar saja, diketahui berasal genus Thyreus , Allorhynchium serta kelompok ordo Lepidoptera yang terdiri dari familia Hesperidae, Pieridae, Nymphalidae, Erebidae dan Hyblaeidea. c. Aktivitas serangga pengunjung yang kehadirannya mengambil serbuk sari saja, diketahui berasal genus Tettigona dan Blatella . 61 62 B. SARAN 1. Di Indonesia, penelitian yang mengkaji tentang tingkat keanekaragaman serangga pengunjung bunga matahari masih sangatlah minim, sehingga perlu dikaji (disempurnakan) lebih dalam lagi terhadap berbagai jenis varietas dalam waktu yang lebih lama. Baik varietas penghasil minyak, varietas bahan makanan (kuaci), varietas pakan ternak dan bunga potong guna mengetahui tingkat perbedaan data
    [Show full text]
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • WO 2016/102490 Al 30 June 2016 (30.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/102490 Al 30 June 2016 (30.06.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 333/12 (2006.01) A01N 43/40 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 405/12 (2006.01) A01N 43/54 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 409/12 (2006.01) A01N 43/72 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A0 43/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/EP20 15/08083 1 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 2 1 December 2015 (21 .12.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/095,077 22 December 2014 (22.
    [Show full text]
  • Universidade Comunitária Regional De Chapecó
    UNIVERSIDADE COMUNITÁRIA REGIONAL DE CHAPECÓ Programa de Pós-Graduação em Ciências Ambientais Sandra Mara Sabedot INVENTÁRIO DE TEFRITÍDEOS ENDÓFAGOS (DIPTERA: TEPHRITIDAE) ASSOCIADOS A CAPÍTULOS DE ASTERÁCEAS NO MUNICÍPIO DE CHAPECÓ – SANTA CATARINA Chapecó – SC, 2007 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. UNIVERSIDADE COMUNITÁRIA REGIONAL DE CHAPECÓ Programa de Pós-Graduação em Ciências Ambientais INVENTÁRIO DE TEFRITÍDEOS ENDÓFAGOS (DIPTERA: TEPHRITIDAE) ASSOCIADOS A CAPÍTULOS DE ASTERÁCEAS NO MUNICÍPIO DE CHAPECÓ – SANTA CATARINA Sandra Mara Sabedot Dissertação apresentada ao Programa de Pós- Graduação da Universidade Comunitária Regional de Chapecó, como parte dos pré- requisitos para obtenção do título de Mestre em Ciências Ambientais. Orientador: Prof. Dr. Flávio Roberto Mello Garcia Chapecó – SC, outubro, 2007 ii 595.774 Sabedot, Sandra Mara S115i Inventário de tefritídeos endófagos (Díptera: Tephritidae) associados à capítulos de asteráceas no município de Chapecó, Santa Catarina / Sandra Mara Sabedot. – Chapecó, 2007. 82 p. Dissertação (Mestrado) - Universidade Comunitária Regional de Chapecó, 2007. Orientador: Prof. Dr. Flávio Roberto Mello Garcia Insetos. 2. Tephritidae - Controle. 3. Asteraceae. 4. Plantas hospedeiras. I. Garcia, Flávio Roberto Mello. II. Título CDD 595.774 Catalogação elaborada por Daniele Lopes CRB 14/989 iii UNIVERSIDADE COMUNITÁRIA REGIONAL DE CHAPECÓ Programa de Pós-Graduação em Ciências Ambientais INVENTÁRIO DE TEFRITÍDEOS ENDÓFAGOS (DIPTERA: TEPHRITIDAE)
    [Show full text]
  • INDIAN JOURNAL of ECOLOGY Volume 46 Issue-2 June 2019
    ISSN 0304-5250 INDIAN JOURNAL OF ECOLOGY Volume 46 Issue-2 June 2019 THE INDIAN ECOLOGICAL SOCIETY INDIAN ECOLOGICAL SOCIETY (www.indianecologicalsociety.com) Past resident: A.S. Atwal and G.S.Dhaliwal (Founded 1974, Registration No.: 30588-74) Registered Office College of Agriculture, Punjab Agricultural University, Ludhiana – 141 004, Punjab, India (e-mail : [email protected]) Advisory Board Kamal Vatta S.K. Singh S.K. Gupta Chanda Siddo Atwal B. Pateriya K.S. Verma Asha Dhawan A.S. Panwar S. Dam Roy V.P. Singh Executive Council President A.K. Dhawan Vice-Presidents R. Peshin S.K. Bal Murli Dhar G.S. Bhullar General Secretary S.K. Chauhan Joint Secretary-cum-Treasurer Vaneet Inder Kaur Councillors A.K. Sharma A. Shukla S. Chakraborti N.K. Thakur Members Jagdish Chander R.S. Chandel R. Banyal Manjula K. Saxexa Editorial Board Chief-Editor Anil Sood Associate Editor S.S. Walia K. Selvaraj Editors M.A. Bhat K.C. Sharma B.A. Gudae Mukesh K. Meena S. Sarkar Neeraj Gupta Mushtaq A. Wani G.M. Narasimha Rao Sumedha Bhandari Maninder K. Walia Rajinder Kumar Subhra Mishra A.M. Tripathi Harsimran Gill The Indian Journal of Ecology is an official organ of the Indian Ecological Society and is published six-monthly in June and December. Research papers in all fields of ecology are accepted for publication from the members. The annual and life membership fee is Rs (INR) 800 and Rs 5000, respectively within India and US $ 40 and 800 for overseas. The annual subscription for institutions is Rs 5000 and US $ 150 within India and overseas, respectively.
    [Show full text]
  • General News
    Biocontrol News and Information 27(4), 63N–79N pestscience.com General News David Greathead hoods. Both broom and tagasaste pods can be a seasonally important food source for kererū (an As this issue went to press we received the sad news endemic pigeon, Hemiphaga novaeseelandiae), par- of the untimely death of Dr David Greathead at the ticularly in regions where its native food plants have age of 74. declined. A previous petition for the release of G. oli- vacea into New Zealand was rejected by the New Besides being a dedicated and popular Director of Zealand Ministry of Agriculture and Forestry in CABI’s International Institute of Biological Control 1998 on the grounds that there was insufficient (IIBC), David was the driving force behind the estab- information to assess the relative beneficial and lishment and development of Biocontrol News and harmful effects of the proposed introduction. Information. He was an active member of its Edito- rial Board, providing advice and ideas right up to his As part of the submission to ERMA, Landcare death. Research quantified the expected costs and benefits associated with the introduction of additional biolog- We plan that the next issue will carry a full obituary. ical control agents for broom1. Due to uncertainties Please contact us if you would be willing to con- regarding the costs, a risk-averse approach was tribute information: commentary, personal adopted by assuming a worse-case scenario where memories or anecdotes on the contribution that tagasaste was planted to its maximum potential David made. extent in New Zealand (10,000 ha), levels of non- target damage to tagasaste were similar to those on Contact: Matthew Cock & Rebecca Murphy C.
    [Show full text]
  • Diversity of Spiders from Zolambi Region of Chandoli National Park
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 2 Ver. 1 (Mar -Apr. 2015), PP 30-33 www.iosrjournals.org Diversity of Spiders from Zolambi Region of Chandoli National Park Dr. Suvarna More Dept. of Zoology P. V. P. Mahavidyalaya, Kavathe Mahankal, Dist. -Sangli. (MS), India 416405 Abstract: Diversity of spiders from Zolambi region of Chandoli National Park in Western Ghats is studied for the first time. A total of 90 species belonging to 55 genera and 19 families are recorded from the study area during 2011-2013 with a dominance of Araneid, Salticid and Lycosid spiders. Key words: Spider diversity, Western Ghats I. Introduction Spiders comprise one of the largest orders of animals. The spider fauna of India has never been studied in its entirety despite of contributions by many arachnologists since Stoliczka (1869). The pioneering contribution on the taxonomy of Indian spiders is that of European arachnologist Stoliczka (1869). Review of available literature reveals that the earliest contribution by Blackwall (1867); Karsch (1873); Simon (1887); Thorell (1895) and Pocock (1900) were the pioneer workers of Indian spiders. They described many species from India. Tikader (1980, 1982), Tikader, described spiders from India. Tikader (1980) compiled a book on Thomisidae spiders of India, comprising two subfamilies, 25 genera and 115 species. Pocock (1900) and Tikader (1980, 1987) made major contributions to the Indian Arachnology, have high lightened spider studies to the notice of other researcher. Tikader (1987) also published the first comprehensive list of Indian spiders, which included 1067 species belonging to 249 genera in 43 families.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Crop and Stored Grain Pest and Their Management. (ENTO-4311)
    Lec. 1(p.1 – 2): Introduction of Economic Entomology and Economic Classification of Insect Pests Lec. 2-5 (p.3- 15) Rice: Yellow stem borer, gallmidge, brown planthopper, green leafhopper, hispa, leaf folder, ear head bug, grasshoppers, root weevil, swarming caterpillar, climbing cutworm, case worm, whorl maggot, leaf mite, panicle mite, IPM practices in rice. Lec. 6-8 (p.16- 25) Sorghum and other millets: Sorghum shoot fly, stem borer, pink borer, sorghum midge, ear head bug, red hairy caterpillar, deccan wingless grasshopper, aphids, maize shoot bug, flea beetle, blister beetles, ragi cutworm, ragi root aphid, army worm. Wheat: Ghujia weevil, ragi pink borer, termites. Lec. 9-11 (p. 26- 33) Sugarcane: Early shoot borer, internodal borer, top shoot borer, scales, leafhoppers, white grub, mealy bugs, termites, whiteflies, woolly aphid, yellow mite. Lec 12- 14 (p.34- 47) Cotton: Spotted bollworm, american bollworm, pink bollworm, tobacco caterpillar, leafhopper, whiteflies, aphid, mites , thrips, red cotton bug, dusky cotton bug, leaf roller, stem weevil, grasshoppers, mealybug, IPM in cotton. Lec. 15 (p.48 - 51) Jute: jute semilooper, jute stem weevil, jute stem girdler, Bihar hairy caterpillar Mesta: Hairy caterpillars, stem weevil, mealy bugs, leafhopper, aphid. Sunhemp: Hairy caterpillars, stem borer, flea beetle. Lec. 16-17 (p.52- 59) Pulses: Gram caterpillar, plume moth, pod fly, stem fly, spotted pod borer, cowpea aphid, cow bug, pod bug, leafhopper, stink bug, green pod boring caterpillar, blue butterflies, redgram mite. Pea: pea leaf miner and pea stem fly Soyabean: Stem fly, ragi cutworm, leaf miner, whitefly. Lec. 18 (p.60- 63) Castor: Semilooper, shoot and capsule borer, tobacco caterpillar, leafhopper, butterfly, whitefly, thrips, castor slug, mite.
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • A Systematic Literature Review
    Tropical Ecology 58(1): 211–215, 2017 ISSN 0564-3295 © International Society for Tropical Ecology www.tropecol.com Diversity of native bees on Parkinsonia aculeata L. in Jammu region of North-West Himalaya UMA SHANKAR, D. P. ABROL*, DEBJYOTI CHATTERJEE & S. E. H. RIZVI Division of Entomology, Sher-e- Kashmir University of Agricultural Sciences & Technology, Faculty of Agriculture, Chatha Jammu – 180009, J&K, India Abstract: A study was conducted in Jammu region of Jammu and Kashmir State to determine the species composition and relative abundance of pollinators on Parkinsonia aculeata L., (Family Fabaceae) is a perennial flowering plant, growing as an avenue tree on roadsides. Parkinsonia flowers attracted 27 species of insects belonging to orders Hymenoptera, Diptera and Lepidoptera. They included Megachile bicolor (Fabricius), Megachile hera (Bingham), Megachile lanata (Fabricius), Megachile disjuncta (Fab.), Megachile cephalotes (Smith), Megachile badia (Fab.), Megachile semivestita (Smith), Megachile vigilans (Smith), Megachile relata (Fab.), Megachile femorata, Andrena sp., Amegilla zonata (Linnaeus), Amegilla confusa (Smith), Apis dorsata (Fab.), Apis cerana (Fab.), Apis florea (Fab.), Ceratina smaragdula (Fab.)., Xylocopa latipes (Drury), Nomia iridescens (Smith), Nomia curvipes (Fab.), and seven species of unidentified insects. Megachile bees were most abundant and constituted more than 95% of the insects visiting Parkinsonia aculeata flowers. Species diversity measured by Shannon Wiener index showed a high value of H' = 2.03, reflecting a diverse pollinator community in the area. The foragers of all the species were found to be most active between 11.00 and 15.00 hrs and the population of flower visitors declined thereafter. Information on diversity of native pollinators from disturbed habitats and their specific dependence on P.
    [Show full text]
  • Entomology) Onwards Google Meet) on 15Th May, 2021 at 10 Am Participants: I
    Board of Studies Meeting (Department of Organised virtually (on Entomology) onwards google meet) on 15th May, 2021 at 10 am Participants: I. Prof. Nand Lal, Deppt. of life 2. Prof. C. P. science, CSJM Srivastav, Professor of University, Kanpur 3. Prof.Y. P. Entomology, B.H.U. Malik, Professor Varanasi of Entomology, CSA Kanpur Univ. of Agri. and Tech. 4. Dr. Dev Narayan Singh, Associate Professor, of College, Bakewar (Etawah) Deptt. Entomology, Janta 5. Dr. B. B. Singh, Assistant Professor, Mahavidyalay, Ajitmal (Auraiya) Deptt. of Entomology, Janta 6. Dr. Mahesh Prasad Yadav, Convenor and Associate Horticulture, Janta professor, Deptt. of College, Bakewar (Etawah) Minutes Of Meeting: BOS mecting of of deptt. Entomology was held to New Education adapt syllabus as under Policy (NEP 2020) with the suggested the presence of various renowed subjects. The outcomes of experts of meetings are as under. 1. Syllabus under suggested NEP 2020 is and implementation. accepted recommended for 2. Prof. Suggestions given by C. P. Srivastav and Prof. Y. minor P. Malik regarding ammendments and corrections have been 3. incorporated. Website names as well as books names have also been syllabus adapted by board. suggested in the 4. Board also that as the suggested per norms of ICAR the name of should be "Entomology". Department 5. Board also that master suggested degree in subject will be "M. Sc. Entomology" (Ag.) Enclosures: Corrected final of syllabus Entomology for B. Sc. (Ag.) programme. Prepared by: Dr. Dev Narayan Singh Convenor Dr. M. P. Yadav Department of Entomology Sr. Course semester No. code Name of papers AG-203 II Credit hrs.
    [Show full text]