Attempts to Quantify Mitochondrial DNA Deletions in Single Drosophila Melanogaster Flies

Total Page:16

File Type:pdf, Size:1020Kb

Attempts to Quantify Mitochondrial DNA Deletions in Single Drosophila Melanogaster Flies Attempts to Quantify Mitochondrial DNA Deletions in Single Drosophila melanogaster Flies Masters by Research Thesis Lewis Huzzard BSc (Hons) Lancaster University July 2020 I, Lewis Huzzard, confirm that the work presented in this thesis is my own and has not been submitted in substantially the same form for the award of a higher degree elsewhere. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Submitted in fulfilment of the requirements for the degree of Research Masters 1 Abstract Research to date has not clearly described the role mitochondrial DNA (mtDNA) deletions may have in normal ageing. Therefore, a high throughput method of mtDNA deletion detection and quantification is required. The goal of this project was to develop such an assay using individual Drosophila melanogaster, which allowed for rapid generation of aged animals and manipulation of conditions which could affect deletion generation. An assay composed of DNA extraction and Quantitative Polymerase Chain Reaction (QPCR) was designed for deletion amplification. Primers were designed to amplify deletions within the cytochrome oxidase (COX) region with primers in nadh ubiquinone oxidoreductase 1 (ND1) used as a control to quantify total mtDNA. Optimising QPCR methods for specific primer pairs improved target amplification and replicability. Redesign of an existing DNA extraction kit improved overall mtDNA yield for assay development but still lacked consistency. QPCR inhibitors present in commercial extraction kits were present in minor concentrations in extracts and likely impacted amplification efficiency. The lack of sufficient mtDNA extraction from single Drosophila for consistent deletion amplification lead to mispriming and nonspecific amplification of nuclear DNA (nDNA). Repeated amplification of one deletion across multiple extracts suggests QPCR preferentially amplifies the shortest available target sequence, corresponding to the largest deletion. Redesign of the DNA extraction method to yield higher mtDNA concentration whilst reducing inhibitors would assist in reducing nonspecific amplification. mtDNA enrichment may be required to remove nDNA if nonspecific amplification still occurs. Differential amplification of deletions depending on size renders comparison and quantification difficult. Targeted amplification of a specific common deletion may eliminate this issue at the cost of quantifying just one deletion. The likelihood of single Drosophila harbouring sufficient numbers of a specific deletion should be determined to assess if quantification of mtDNA deletion levels in single Drosophila is viable. 2 Table of Contents Abstract ............................................................................................................................. 2 Acknowledgements .......................................................................................................... 5 Literature Review .............................................................................................................. 6 Introduction .............................................................................................................................. 6 Concepts of Ageing .................................................................................................................... 7 Evolutionary Theory of Ageing .............................................................................................. 7 Mechanistic Theory of Ageing ............................................................................................... 8 Oxidative Theory of Ageing ..................................................................................................... 10 Free Radical Theory of Ageing ............................................................................................ 10 Redox Homeostasis ............................................................................................................. 11 The Role of Reactive Oxygen Species in Ageing .................................................................. 13 Mitochondrial Theory of Ageing ............................................................................................. 14 The Mitochondrial Theory of Ageing ................................................................................... 15 Mitochondrial DNA ............................................................................................................. 19 Mitochondrial DNA Repair .................................................................................................. 20 Mitochondrial DNA Replication ........................................................................................... 22 Causes of Mitochondrial DNA Damage ............................................................................... 24 Accumulation of Mitochondrial DNA Damage .................................................................... 25 Mitochondrial Heteroplasmy .............................................................................................. 27 The Role of Mitochondrial DNA Damage in Ageing ............................................................ 30 Mitochondrial DNA Deletion ................................................................................................... 31 Accumulation of Mitochondrial DNA Deletions .................................................................. 31 Impacts of Mitochondrial DNA Deletion ............................................................................. 34 The Common Deletion ......................................................................................................... 35 The Role of Mitochondrial DNA Deletions in Ageing ........................................................... 37 Detection & Quantification of Mitochondrial DNA Deletions ............................................. 39 Experimental Aims .................................................................................................................. 42 Age-Related Functional Decline .......................................................................................... 42 Non-genetic Manipulation of Lifespan ................................................................................ 43 cytochrome c oxidase .......................................................................................................... 44 NADH ubiquinone oxidoreductase 1 ................................................................................... 44 Experimental Aims .............................................................................................................. 45 Methods .......................................................................................................................... 46 Drosophila Egg Hatching & Food ............................................................................................. 46 Fly Ageing ................................................................................................................................ 47 DNA Extraction ........................................................................................................................ 48 Zymo Quick-DNA Tissue/Insect Microprep Kit. .................................................................... 48 Invitrogen Purelink Genomic DNA Mini Kit ......................................................................... 49 Qiagen QIAamp DNA Micro Kit. .......................................................................................... 50 Optimised Zymo Quick-DNA Tissue/Insect Microprep Kit. .................................................. 51 Primers .................................................................................................................................... 52 QPCR ........................................................................................................................................ 53 Agarose Gel Separation & Imaging .......................................................................................... 54 DNA Purification from Agarose Gel ......................................................................................... 54 Sequencing .............................................................................................................................. 55 Results ............................................................................................................................. 55 Drosophila Lifespan Data ........................................................................................................ 55 3 DNA Extraction ........................................................................................................................ 56 Comparing DNA Extraction Kits .......................................................................................... 56 Qiagen Extraction Kit Contamination ................................................................................. 58 Optimisation of the Zymo Extraction Kit ............................................................................. 60 ND1 Primer Pair ....................................................................................................................... 61 Optimisation of ND1 Amplification ..................................................................................... 62 Yui Primer Pair ......................................................................................................................... 66 Optimisation of Yui
Recommended publications
  • Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers
    Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers Douda Bensasson,* Dmitri A. Petrov,² De-Xing Zhang,³ Daniel L. Hartl,* and Godfrey M. Hewitt§ *Department of Organismic and Evolutionary Biology, Harvard University; ²Department of Biological Sciences, Stanford University; ³Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China; and §School of Biological Sciences, University of East Anglia, Norwich, England Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are ``dead on arrival''; they are abundant in many different eukaryotes, and their mitochondrial origin simpli®es the identi®cation of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and signi®cantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma).
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Numts in Sequenced Eukaryotic Genomes
    NUMTs in Sequenced Eukaryotic Genomes Erik Richly and Dario Leister Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called nuclear mitochondrial DNA (NUMT). Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size. Copy number ranges from none or few copies in Anopheles, Caenorhabditis, Plasmodium, Drosophila, and Fugu to more than 500 in human, rice, and Arabidopsis. The average size is between 62 (baker’s yeast) and 647 bps (Neurospora), respectively. A correlation between the abundance of NUMTs and the size of the nuclear or the mitochondrial genomes, or of the nuclear gene density, is not evident. Other factors, such as the number and/or stability of mitochondria in the germline, or species-specific mechanisms controlling accumulation/loss of nuclear DNA, might be responsible for the interspecific diversity in NUMT accumulation. Key words: duplication, gene transfer, genome evolution, mito- chondria, NUMT, pseudogene. In eukaryotes, nuclear DNA exists that is homologous they range from less than ten in Fugu, Drosophila, to mitochondrial DNA (mtDNA). These sequences, which Plasmodium, and Caenorhabditis to more than 500 in originate from the invasion of nuclear DNA by mtDNA, human, rice, and Arabidopsis. Between 10 and 100 NUMTs are designated nuclear mtDNA (NUMT) (Lopez et al. are present in rat, Ciona, Neurospora, and in the yeast 1994). NUMTs exhibit different degrees of homology to species. No NUMTs at all have been detected in Anopheles. their mitochondrial counterparts; are variable in size; For N. crassa only a preliminary estimate is possible evenly distributed within and among chromosomes, and, because sequence information of its mtDNA is still in cases, are highly rearranged and/or fragmented (Zhang incomplete; nevertheless, between 11 (threshold ,10250) and Hewitt 1996; Ricchetti, Fairhead, and Dujon 1999; and 22 (1024) NUMTs exist in this fungal species (fig.
    [Show full text]
  • Numts) in Fig Wasp Genomes
    insects Article Tracking the Distribution and Burst of Nuclear Mitochondrial DNA Sequences (NUMTs) in Fig Wasp Genomes 1, 1, 2 1,2, 1, Jian-Xia Wang y, Jing Liu y, Yun-Heng Miao , Da-Wei Huang * and Jin-Hua Xiao * 1 Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; [email protected] (J.-X.W.); [email protected] (J.L.) 2 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] * Correspondence: [email protected] (D.-W.H.); [email protected] (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.) These authors contributed equally to this work. y Received: 4 September 2020; Accepted: 6 October 2020; Published: 7 October 2020 Simple Summary: Nuclear mitochondrial DNA sequences (NUMTs), which result from the insertion of exogenous mtDNA into the nuclear genome, are widely distributed in eukaryotes. However, how NUMTs are inserted into the nuclear genome and their post-insertion fates remain a mystery. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, which will be helpful to study the biological issues of NUMTs. We here select 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results show that the distributions of NUMTs are species- or lineage-specific. Furthermore, genomic environmental factors such as genome size, the damage-prone regions, and the mode of TE dynamics can determine the insertion and post-insertion fate of NUMTs.
    [Show full text]
  • Mitochondrial Medicine in the Omics Era
    Mitochondrial Medicine in the Omics Era Joyeeta Rahman1 and Shamima Rahman1,2* 1 Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health and 2 Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK *Correspondence to: Professor Shamima Rahman Mitochondrial Research Group Genetics and Genomic Medicine UCL Great Ormond Street Institute of Child Health London WC1N 1EH, UK. Telephone: +44 (0)2079052608 [email protected] Keywords: Mitochondrial disease, OXPHOS, signalling, omics, genomics, transcriptomics, proteomics, metabolomics, mitochondrial stress response, treatment 1 Abstract Mitochondria are dynamic bioenergetic organelles whose maintenance requires ~1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homeostatic functions. Mitochondrial diseases represent one the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and lack of curative therapies. This review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread utilisation of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets
    [Show full text]
  • The Transformation of the Centrosome Into the Basal Body: Similarities and Dissimilarities Between Somatic and Male Germ Cells and Their Relevance for Male Fertility
    cells Review The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility Constanza Tapia Contreras and Sigrid Hoyer-Fender * Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany; [email protected] * Correspondence: [email protected] Abstract: The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An Citation: Tapia Contreras, C.; articular structure is formed around the centriole pair known as the connecting piece, situated in the Hoyer-Fender, S. The Transformation neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, of the Centrosome into the Basal in short, HTCA.
    [Show full text]
  • Mitochondrial Sequences Or Numts –
    bioRxiv preprint doi: https://doi.org/10.1101/739805; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Mitochondrial sequences or Numts – 2 By-catch differs between sequencing 3 methods 4 Running title: Numts in long-read data 5 Authors: 6 Hannes Becher1,2 & Richard A Nichols1 7 1 Queen Mary University of London, School of Biological and Chemical Sciences 8 2 Present address: University of Edinburgh, Institute of Evolutionary Biology 9 10 Abstract 11 Nuclear inserts derived from mitochondrial DNA (Numts) encode valuable information. 12 Being mostly non-functional, and accumulating mutations more slowly than mitochondrial 13 sequence, they act like molecular fossils – they preserve information on the ancestral 14 sequences of the mitochondrial DNA. In addition, changes to the Numt sequence since their 15 insertion into the nuclear genome carry information about the nuclear phylogeny. These 16 attributes cannot be reliably exploited if Numt sequence is confused with the mitochondrial 17 genome (mtDNA). The analysis of mtDNA would be similarly compromised by any confusion, 18 for example producing misleading results in DNA barcoding that used mtDNA sequence. 1 bioRxiv preprint doi: https://doi.org/10.1101/739805; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • TALPID3 and ANKRD26 Selectively Orchestrate FBF1 Localization and Cilia Gating
    ARTICLE https://doi.org/10.1038/s41467-020-16042-w OPEN TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating Hao Yan 1,2,3,7, Chuan Chen4,7, Huicheng Chen1,2,3, Hui Hong 1, Yan Huang4,5, Kun Ling4,5, ✉ ✉ Jinghua Hu4,5,6 & Qing Wei 3 Transition fibers (TFs) regulate cilia gating and make the primary cilium a distinct functional entity. However, molecular insights into the biogenesis of a functional cilia gate remain 1234567890():,; elusive. In a forward genetic screen in Caenorhabditis elegans, we uncover that TALP-3, a homolog of the Joubert syndrome protein TALPID3, is a TF-associated component. Genetic analysis reveals that TALP-3 coordinates with ANKR-26, the homolog of ANKRD26, to orchestrate proper cilia gating. Mechanistically, TALP-3 and ANKR-26 form a complex with key gating component DYF-19, the homolog of FBF1. Co-depletion of TALP-3 and ANKR-26 specifically impairs the recruitment of DYF-19 to TFs. Interestingly, in mammalian cells, TALPID3 and ANKRD26 also play a conserved role in coordinating the recruitment of FBF1 to TFs. We thus report a conserved protein module that specifically regulates the functional component of the ciliary gate and suggest a correlation between defective gating and cilio- pathy pathogenesis. 1 CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. 2 University of Chinese Academy of Sciences, Beijing 100039, China. 3 Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
    [Show full text]
  • Genome-Wide Polymorphism and Signatures of Selection in the Symbiotic Sea Anemone Aiptasia Emily S
    Bellis et al. BMC Genomics (2016) 17:160 DOI 10.1186/s12864-016-2488-6 RESEARCHARTICLE Open Access Genome-wide polymorphism and signatures of selection in the symbiotic sea anemone Aiptasia Emily S. Bellis, Dana K. Howe and Dee R. Denver* Abstract Background: Coral reef ecosystems are declining in response to global climate change and anthropogenic impacts. Yet patterns of standing genetic variation within cnidarian species, a major determinant of adaptive potential, are virtually unknown at genome-scale resolution. We explore patterns of genome-wide polymorphism and identify candidate loci under selection in the sea anemone Aiptasia, an important laboratory model system for studying the symbiosis between corals and dinoflagellate algae of the genus Symbiodinium. Results: Low coverage genome sequencing revealed large genetic distances among globally widespread lineages, novel candidate targets of selection, and considerably higher heterozygosity than previously reported for Aiptasia. More than 670,000 single nucleotide polymorphisms were identified among 10 Aiptasia individuals including two pairs of genetic clones. Evolutionary relationships based on genome-wide polymorphism supported the current paradigm of a genetically distinct population from the US South Atlantic that harbors diverse Symbiodinium clades. However, anemones from the US South Atlantic demonstrated a striking lack of shared derived polymorphism. Heterozygosity was an important feature shaping nucleotide diversity patterns: at any given SNP site, more than a third of individuals genotyped were heterozygotes, and heterozygosity within individual genomes ranged from 0.37–0.58 %. Analysis of nonsynonymous and synonymous sites suggested that highly heterozygous regions are evolving under relaxed purifying selection compared to the rest of the Aiptasia genome.
    [Show full text]
  • Supplemental Materials
    The infection-tolerant mammalian reservoir of Lyme disease and other zoonoses broadly counters the inflammatory effects of endotoxin Supplemental Materials Figures S1-S5 Tables S1-S20 Figure S1. Digital photograph of two adult Peromyscus leucopus with exudative conjunctivitis and huddled together. The animals had received 10 mg/gm body of Escherichia coli lipopolysaccharide intraperitoneally the day before. Figure S2. Species- and tissue-specific responses to LPS. Independent differential gene expression analysis of RNA-seq data were performed for blood, spleen, and liver tissues of P. leucopus and M. musculus collected 4 h after injection with LPS or buffer alsone as control. These are represented as volcano plots with range- adjusted scales for the log2-transformed fold-changes on x-axes and log10-transformed FDR p values on y- axes. Colors of symbols denote the following: red, up-regulated gene with absolute fold-change > 4.0 and p value < 0.05; purple, down-regulated gene with absolute fold-change > 4.0 and p value < 0.05; and gray, all others. Numbers at the top left and right corners in each plot respresent numbers of down- and up-regulated genes, respectively. Figure 3 is same data with constant scales for x- and y-axes across the plots. Numerical values for each gene in the 6 datasets are provided in Tables S4-S9. Figure S3. Correlation of IL-10 and IL-10 P. leucopus and M. musculus from RNA-seq of spleen and of Figure 6B and TaBle S14. The scatter plot is log10 values of normalized unique reads of one coding sequence against another for each of the four groups, as defined in the legend for Figure 6 and indicated By different symBols.
    [Show full text]
  • Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila Melanogaster
    bioRxiv preprint doi: https://doi.org/10.1101/017855; this version posted April 10, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster Sibylle Chantal Vonesch1, David Lamparter2, Trudy FC Mackay3, Sven Bergmann2, Ernst Hafen1 1 Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich 2 Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne 3 Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7614 bioRxiv preprint doi: https://doi.org/10.1101/017855; this version posted April 10, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability of controlling the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines and find that top variants are predominantly sex-specific; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched in homologs of genes involved in human height regulation.
    [Show full text]