1.3 Name: Section Title: Microevolution Opening Activity

Total Page:16

File Type:pdf, Size:1020Kb

1.3 Name: Section Title: Microevolution Opening Activity Section: 1.3 Name: Section Title: Microevolution Opening Activity: Latin Root Word: micro - Review of Old Information: NONE New Information: I. What is Microevolution? • Microevolution -populations and species change through time resulting from relatively _______________ genetic variations • Speciation - the process of new species forming from old species. Driven by ________________ and _______________ isolation. II. Rates of Speciation: 1. Gradualism: gradual evolution, new species develop over ______________ periods of time. 2. Punctuated Equilibrium: long, stable periods of time separated by _______________ changes. III. What causes Microevolution? • ______________ • ______________ • ______________ • ______________ lV. Mutation • A change in _______________ structure that causes the expression of a different trait which changes the gene frequency. V. Migration • _______________ - gene frequencies changing by individuals moving into a population • _______________ - gene frequencies changing by individuals moving out of a population VI. Genetic Drift • shift in gene frequencies as a result of _______________ _______________ which changes overall genes in the population (i.e. wildfire, flood, drought, etc.) VII. Natural Selection • Stabilizing Selection : • Directional Selection : • Disruptive Selection : • Sexual Selection : Diagram: Stabilizing Selection Disruptive Selection Directional Selection Activity: 1. What is the definition of evolution? a. What do you think the prefix “micro” means? b. Therefore, how would you define microevolution? 2. _____A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d. Migration 3. _____Which of the following is not a type of natural selection? a. Disruptive selection b. Directional selection c. Rotational selection d. Stabilizing selection 4. _____Which of the following is not a cause of natural selection? a. Speciation b. Mutation c. Migration d. Genetic Drift e. All of the above 5. _____Which of the following is not an assumption of Hardy Weinberg Equilibrium a. There is no mutation b. There is no migration c. Individuals mate randomly d. There is no natural selection e. None of the above 6. _____The ability of an organism to survive, reproduce, and pass on its traits is called a. Speciation b. Hardy Weinberg Equilibrium c. Fitness d. Genetic Drift 7. _____A population of beetles reproduces and the parent generation has 75% brown genes and 25% green genes. Due to random luck the offspring of the population has 71% brown genes and 29% green genes. This phenomenon is called ______? a. Mutation b. Genetic Drift c. Speciation d. Sexual selection 8. _____There is a population of peppered moths that exist in an industrialized area where soot has covered areas of plants in the environment. Peppered moths can be all white, white with black spots, and all black. Which of the three peppered moths would be considered most fit for that environment? a. White b. Spotted c. Black d. None of the above 10. _____Natural selection where organisms with either extreme expression for a particular trait are more likely to survive is known as ______________. a. Directional selection b. Disruptive selection c. Stabilizing selection 11. _____Speciation is driven by a. Species area effect b. Catastrophism c. Geographic and reproductive isolation d. Uniformitarianism 12. _____Gradualism states that new species develop over a. Disruptive selection b. Long periods of time c. Quick changes d. Stabilizing selection 13. The mechanisms for microevolution: mutation, migration, genetic drift, and natural selection. These mechanisms cause a change in gene frequency in a single population which is the definition of microevolution. Explain each mechanism in you own words using complete sentences. a. Mutation: b. Migration: c. Genetic Drift: d. Natural Selection: 14. The process of a new species developing through microevolution from a pre-existing species is called ________________________. 15. There are four types of natural selection: stabilizing selection, directional selection, distributive selection, and sexual selection. Match the description of the four types of natural selection with the following pictures. Stabilizing selection is when individuals with an average trait have the greatest chance of survival. 1 __________ Directional selection is when individuals with one of the more extreme traits are more likely to survive. 2 __________ Sexual selection is when females choose males to mate with bases on certain traits. 3 __________ Disruptive selection is organism with either extreme trait have a greater chance of survival. 4 __________ .
Recommended publications
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • Random Mutation and Natural Selection in Competitive and Non-Competitive Environments
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.09.001751 Alan Kleinman. Biomed J Sci & Tech Res Mini Review Open Access Random Mutation and Natural Selection In Competitive and Non-Competitive Environments Alan Kleinman* Department of Medicine, USA Received: : September 10, 2018; Published: September 18, 2018 *Corresponding author: Alan Kleinman, PO BOX 1240, Coarsegold, CA 93614, USA Abstract Random mutation and natural selection occur in a variety of different environments. Three of the most important factors which govern the rate at which this phenomenon occurs is whether there is competition between the different variants for the resources of the environment or not whether the replicator can do recombination and whether the intensity of selection has an impact on the evolutionary trajectory. Two different experimental models of random mutation and natural selection are analyzed to determine the impact of competition on random mutation and natural selection. One experiment places the different variants in competition for the resources of the environment while the lineages are attempting to evolve to the selection pressure while the other experiment allows the lineages to grow without intense competition for the resources of the environment while the different lineages are attempting to evolve to the selection pressure. The mathematics which governs either experiment is discussed, and the results correlated to the medical problem of the evolution of drug resistance. Introduction important experiments testing the RMNS phenomenon. And how Random mutation and natural selection (RMNS) are a does recombination alter the evolutionary trajectory to a given phenomenon which works to defeat the treatments physicians use selection pressure? for infectious diseases and cancers.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Local Drift Load and the Heterosis of Interconnected Populations
    Heredity 84 (2000) 452±457 Received 5 November 1999, accepted 9 December 1999 Local drift load and the heterosis of interconnected populations MICHAEL C. WHITLOCK*, PAÈ R K. INGVARSSON & TODD HATFIELD Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 We use Wright's distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Bene®cial alleles neither ®x in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation±selection±drift±migration balance with sucient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coecients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a dierent genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate eect. Keywords: deleterious mutations, heterosis, hybrid ®tness, inbreeding depression, migration, population structure. Introduction genetic drift, producing ospring with higher ®tness than the parents (see recent reviews on inbreeding in Crow (1948) listed several reasons why crosses between Thornhill, 1993). Decades of work in agricultural individuals from dierent lines or populations might genetics con®rms this pattern: when divergent lines are have increased ®tness relative to more `pure-bred' crossed their F1 ospring often perform substantially 1individuals, so-called `hybrid vigour'. Crow commented better than the average of the parents (Falconer, 1981; on many possible mechanisms behind hybrid vigour, Mather & Jinks, 1982).
    [Show full text]
  • Biblical Catastrophism and Geology
    BIBLICAL CATASTROPHISM AND GEOLOGY HENRY M. MORRIS Professor of Civi I Engineering Virginia Polytechnic Institute Theories of catastrophism in geological interpretation are not new. Prior to the time of Sir Charles Lyell, scientists generally believed that most geological formations must be attributed to great physical catastrophes or revolutions. Lyell, however, taught that these phenomena could be explained by the ordinary processes of nature, acting over vast expanses of geological time. This is his "principle of uniformitarianism, II. now almost universally accepted as the foundation princ~ple of modern historical geology. Profoundly influenced by LyelPs theories, Charles Darwin soon published his theory of evolu­ tion by natural selection. The supposed paleontologi cal record of the evolutionary history of life on earth, together with the principle of uniformity, now constitutes the interpretive framework within which all data of historical geology are supposed to be explained. Furthermore, this phil­ osophy of evolutionary uniformitarianism now serves also as the interpretive framework in the social sciences and economi cs, and even in the study of religion itself. Thus a superstructure of gigantic size has been erected on the Lyellian-Darwinian foundation. However, catastrophism is not dead. The inadequacies of a thorough-going uniformitarianism have become increasingly obvious in recent years, and such quasi-catastrophist concepts as wan­ dering continents, shifting poles, slipping crusts, meteoritic and cometary collisions, etc., are appearing more and more frequently in geological literature. It is, in fact, generally recognized that even the ordinary fossiliferous deposits of the sedimentary rocks must often have at least a semi-catastrophist basis, since the process of fossilization usually requires rather rapid burial, under conditions seldom encountered in the modern world.
    [Show full text]
  • Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
    Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Phenotypic Plasticity Vs. Microevolution in Relation to Climate Change Noticeable Impacts of Climate Change Phenotypic Plasticit
    6/6/14 Phenotypic Plasticity vs. Microevolution in Relation to Climate Change By Elizabeth Berry, Alex Lefort, Andy Tran, and Maya Vrba (EPA, 2013) Noticeable Impacts of Climate Change Phenotypic Plasticity vs Microevolution !! Canadian Squirrel: earlier breeding !! Phenotypic Plasticity: The ability of a genotype to produce different phenotypes in different environments (Charmantier & Gienapp 2013) !! American Mosquito: changes in dormancy !! Microevolution: Evolution in a small scale-within a single population (UC Museum of Paleontology 2008) !! Field Mustard plant: early blooming times !! Distinction: Phenotypic Plasticity acts on individuals, Microevolution acts on populations. !! Drosophila melanogaster: changes in gene flow !! Norm of Reaction: The range of phenotypic variation available to a given genotype that can change based on the environment. University of California Museum of Paleontology, 2008 European Great Tit: Parus major European Blackcap: Sylvia atricapilla !! Breeding times are evolving earlier in females to account for !! ADCYAP1: gene that controls the Climate Change. expression of migratory behavior !! Phenotypic Plasticity evident in (Mueller et al., 2011) laying times. !! Migratory activity is heritable and population-specific (Berthold & !! Some females having more flexible laying dates. Pulido 1994) ! Climate change causes evolving !! Success of offspring dependent ! on breeding times and caterpillar migratory patterns (Berthold & biomass coinciding, Pulido 1994) Jerry Nicholls and BBC, 2014 University of California
    [Show full text]
  • Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
    G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • 1 1 Catastrophism, Uniformitarianism, and a Scientific
    1 Catastrophism, Uniformitarianism, and a Scientific Realism Debate That Makes a Difference P. Kyle Stanford ([email protected]) Department of Logic and Philosophy of Science UC Irvine Abstract Some scientific realists suggest that scientific communities have improved in their ability to discover alternative theoretical possibilities and that the problem of unconceived alternatives therefore poses a less significant threat to contemporary scientific communities than it did to their historical predecessors. I first argue that the most profound and fundamental historical transformations of the scientific enterprise have actually increased rather than decreased our vulnerability to the problem. I then argue that whether we are troubled by even the prospect of increasing theoretical conservatism in science should depend on the position we occupy in the ongoing debate concerning scientific realism itself. Acknowledgements I would like to acknowledge useful discussions concerning the material in this paper with Kevin Zollman, Penelope Maddy, Jeff Barrett, Pat Forber, Peter Godfrey-Smith, Steve Shapin, Fred Kronz, John Norton, Michael Weisberg, Jane Maienschein, Julia Bursten, Carole Lee, and Arash Pessian, as well as audiences at the Durham University Conference on Unconceived Alternatives and Scientific Realism, the University of Vienna’s (Un)Conceived Alternatives Symposium, the University of Pittsburgh’s Conference on Choosing the Future of Science, Lingnan University’s ‘Science: The Real Thing?’ Conference, the American Association for the Advancement of Science, Cambridge University, the University of Vienna, the University of Pennsylvania, UC San Diego, the University of Washington, the University of Western Ontario, the Pittsburgh Center for the Philosophy of Science, Washington University in St. Louis, Bloomsburg University, Indiana University, the Universidad Nacional Autónoma de México, and the Australian National University.
    [Show full text]
  • DEB Virtual Office Hour
    Division of Environmental Biology (DEB) Virtual Office Hour Welcome to the DEB Virtual Office Hour. We will begin soon. Please submit questions via the Q&A box available to you on WebEx. Please set notification to ‘All Panelists’ Division of Environmental Biology (DEB) Virtual Office Hour – Welcome! Program Directors in attendance today • Matt Olson – Evolutionary Processes ([email protected]) • Kendra McLauchlan – Ecosystem Sciences ([email protected]) • Ford Ballantyne – Ecosystem Sciences ([email protected]) • Doug Levey – Population and Community Ecology ([email protected]) • Leslie Rissler – Evolutionary Processes ([email protected]) • Sam Scheiner – Evolutionary Processes ([email protected]) • Chris Schneider – Systematics and Biodiversity Sciences ([email protected]) Facilitators – Christina Washington, Alina Dallmeier, and Megan Lewis DEB Virtual Office Hour Questions: • Submit your questions via the Q&A box on your screen and set to “All Panelists” • For recently asked questions and future office hour topics, see the DEB blog (https://debblog.nsfbio.com/) • For specific questions about your project, please contact a Program Director DEB Virtual Office Hour • DEB Office Hours: second Monday of each month, 1-2 pm EST Upcoming Topics: Feb 10: Rules of Life/Understanding the Rules of Life Mar 9: RAPID/EAGER/Workshops Apr 13: OPUS May 11: CAREERs June 8: BIO Postdoc Program DEB Virtual Office Hour Today’s Topics: • Bridging Ecology and Evolution Track in DEB Core Solicitation • Demystifying the Co-Review Process • Open question and answer
    [Show full text]