Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Introduction INTRODUCTION 1 THE PSYCHOTHERAPIST’S ESSENTIAL GUIDE TO THE BRAIN The Psychotherapist’s Essential Guide to the Brain provides an overview of the essential parts and functions of the brain that every modern-day therapist should be familiar with. Written in accessible language and consolidating a large body of neuroscientific knowledge, this handy “beginner’s guide” forms a practical and accessible introduc- tion to brain science for psychotherapists. The current chapter lays the groundwork for a big-picture view of how the brain functions, providing essential reference points from which the reader may go on to develop an under- standing of what is happening in the brains of clients, as well as in his or her own. The contemporary psychotherapist has access to a more sophisticated model of mental health than ever before, yet key elements of that model entail an understanding of the neural functions that underpin behaviour, relation- ships, personality, and a sense of self and the surrounding world. This guide aims to bridge the gap between the of- ten esoteric realm of neuroscience research and the pragmatic realities of psychotherapy with clients. The therapist with a practical grasp of the concepts, regions and functions of the nervous system will be rewarded with improved outcomes that reflect a more holistic and integrated understanding of clients. Since Freud, the brain has been variously conceived in terms of an electrical system, a chemical system, and, more recently, a highly interconnected electrochemical network. In terms of convention, we are only now emerg- ing from an outdated medical model that conceptualized the brain primarily as a chemical system that could be “fixed” by means of drug intervention, and coming to the realization that the brain is a malleable communication network where the patterns of connections within and between brain regions are as important as the chemicals that serve the impulses travelling these routes. Understanding this communication network, which happens to be the most complex system we know, can enhance our practice of psychotherapy as we tune in to the intricacies of its various attributes. As a stand-out example, understanding the basic concept of a fast-reacting limbic system versus a slower prefrontal cortex can shed light on why cognitive therapies are often largely ineffective until more basic emotional issues have been addressed via a “bottom up” approach. Or, understanding that emotional memories can be “unhinged” from the hippocampal time/space marker for an event can furnish not only greater empathy for the PTSD sufferer but also ideas on how to reintegrate the traumatic memories from the past so that they stop intruding on the now. We can create better interventions when we know that memory is everything when it comes to brain function, and that memories can change, our neural networks can be altered, and even genetic expressions that support those neural networks can change. And so, with a debt to modern neuroscience, we embark on this modest overview of the brain, trusting it will serve you well in your conceptualizations of clients and arouse your curiosity for further learning. A connectogram of a healthy control subject. Connectograms are graphical representations of connectomics, the field of study dedicated to mapping and interpreting all of the white-matter fibre connections in the human brain. These circular graphs based on diffusion MRI data utilize graph theory to demonstrate the white-matter connections and cortical characteristics for single structures, single subjects, or populations. In this image: From outside to inside, the rings represent the cortical region, grey matter volume, surface area, cortical thickness, curvature, degree of connectivity, node strength, betweenness central- ity, eccentricity, nodal efficiency, and eigenvector centrality. Between degree of connectivity and node strength, a blank ring has been added as a place- holder. This connectogram includes five additional nodal measures not included in the standard con- nectogram. Image: Wikipedia. INTRODUCTION 2 THE DIVIDED BRAIN Iain McGilchrist, in his noteworthy book The Master and His Emissary: The Divided Brain and the Making of the Western World (2009), describes the asymmetry of the brain and the very different natures of the left and right hemispheres. This horizontal understanding of the mental system, as opposed to the vertical triune perspec- tive, gives us insight into the distinctly different yet complementary functions of the two hemispheres. In short, the right hemisphere handles broad attention (what we attend to comes first to us through the right hemisphere); is good at making connections so that we can appreciate the wholeness of dynamic structures and relationships that change over time; is attuned to emotion; and is empathic, intuitive, and moral. In con- trast, the left hemisphere has narrow atten- tion; is good at deconstructing things into parts; and has an appreciation for static, decontextualized, inanimate structures and abstractions. McGilchrist (2009) summarizes the “two worlds” of the hemispheres in this way: The brain has to attend to the world in two completely different ways, and in so doing to bring two dif- ferent worlds into being. In the one [that of the right hemisphere], we experience—the live, complex, em- bodied world of individual, always unique beings, forever in flux, a net of interdependencies, forming and re- forming wholes, a world with which we are deeply connected. In the other [that of the left hemisphere] we “experience” our experience in a special way: a “re-presented” version of it, containing now static, separa- ble, bounded, but essentially fragmented entities, grouped into classes, on which predictions can be based. This kind of attention isolates, fixes and makes each thing explicit by bringing it under the spotlight of attention. In doing so it renders things inert, mechanical, lifeless. But it also enables us for the first time to know, and consequently to learn and to make things. This gives us power. (p. 31) Allan Schore explains that the early-maturing right hemisphere is the locus of attachment formation and es- sentially the gateway to affect regulation later in life—so much so, indeed, that developing an expanded capacity for right-hemisphere processing (an emphasis on right-brained affective skills rather than a left–cognitive bias) is central to clinical expertise (Schore, 2012). In a similar vein, Badenoch (2008) warns therapists to be grounded in right-brain engagement with clients or run the risk of being disengaged from the regulating and integrating influence of right brain-to-right brain connection with clients. She further encourages therapists to widen their window of tolerance, be conscious of implicit vulnerabilities, and develop mindfulness to be present with both the client and self. There is a place for left-brain focus when thinking about specific interventions, but McGilchristas admonishes, the left should remain servant to the right hemisphere as master. 3 THE PSYCHOTHERAPIST’S ESSENTIAL GUIDE TO THE BRAIN Left Hemisphere Right Hemisphere • Less white matter—prioritizing local informa- • More white matter—facilitating faster transfer tion transfer within regions, reflected in an in- of information across regions, reflected in an in- creased ability to localize attention and enhanc- creased ability to hold global attention. ing its self-referring nature. • More sensitive to testosterone. • More reliant on dopamine. • More reliant on noradrenaline. • Superior in the expression of anger. • More intimately connected with the limbic sys- • Highly focused attention to detail; local, nar- tem—identifies emotions faster and more accu- rowly focused attention—sees “parts”. rately than the left and is more involved in emo- • Attends narrowly to the right field of view, the tional expression (except anger). right side of the body, the right side of objects • Open to broad awareness; on the lookout in a (demonstrated in what is known as “hemi-ne- broad and flexible way with vigilance and global glect” following a right-hemisphere stroke). sustained attention—sees the “whole”. • More engaged with the known, the learned, the • Processes information in a non-focal manner. expected; prefers what it knows—“grasps” what • Attends to the peripheral field of vision and the is in focus and has been prioritized. entire left–right visual field. • Efficient when routine is predictable. • Alert and attentive to the new and the nov- • Finds solutions perceived to fit best with current el—awareness begins in the right hemisphere, knowledge or schemas grounding and integrating the experience, before • Processes information in an increasingly focal being further processed in the left on a more de- way that suppresses information not immedi- tailed level. ately relevant. • More engaged in the learning of new informa- • Suppresses the right-hemisphere ability to make tion—explores. distant associations among words or objects • Outperforms the left when prediction is difficult; (and the broader scope of attention in general). more capable of shifting the frame of reference • Takes a local, short-term view. (important for problem solving). • Identifies things by labels rather than context; • Can associate words or objects that are not close- does not deduce from context like the right ly related; can understand unfamiliar (non-cli- hemisphere—in conversation takes things more chéd) metaphor. literally and has difficulty understanding -im
Recommended publications
  • Circular Representation of Human Cortical Networks for Subject and Population-Level Connectomic Visualization
    NeuroImage 60 (2012) 1340–1351 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Full Length Articles Circular representation of human cortical networks for subject and population-level connectomic visualization Andrei Irimia ⁎, Micah C. Chambers, Carinna M. Torgerson, John D. Van Horn Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095, USA article info abstract Article history: Cortical network architecture has predominantly been investigated visually using graph theory representa- Received 13 September 2011 tions. In the context of human connectomics, such representations are not however always satisfactory Revised 19 January 2012 because canonical methods for vertex–edge relationship representation do not always offer optimal insight Accepted 20 January 2012 regarding functional and structural neural connectivity. This article introduces an innovative framework for Available online 28 January 2012 the depiction of human connectomics by employing a circular visualization method which is highly suitable to the exploration of central nervous system architecture. This type of representation, which we name a Keywords: ‘ ’ Connectomics connectogram , has the capability of classifying neuroconnectivity relationships intuitively and elegantly. A Cortical network multimodal protocol for MRI/DTI neuroimaging data acquisition is here combined with automatic image seg- DTI mentation to (1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics MRI and morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level and Neuroimaging population-level connectograms. The scalability of our approach is demonstrated for a population of 50 adults.
    [Show full text]
  • Progress and Challenges in Probing the Human Brain
    University of Pennsylvania ScholarlyCommons Neuroethics Publications Center for Neuroscience & Society 10-2015 Progress and Challenges in Probing the Human Brain Russell A. Poldrack Martha J. Farah University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/neuroethics_pubs Part of the Bioethics and Medical Ethics Commons, Neuroscience and Neurobiology Commons, and the Neurosciences Commons Recommended Citation Poldrack, R. A., & Farah, M. J. (2015). Progress and Challenges in Probing the Human Brain. Nature, 526 (7573), 371-379. http://dx.doi.org/10.1038/nature15692 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/neuroethics_pubs/136 For more information, please contact [email protected]. Progress and Challenges in Probing the Human Brain Abstract Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly er view its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience.
    [Show full text]
  • Evolutionary Expansion of Connectivity Between Multimodal Association Areas in the Human Brain Compared with Chimpanzees,” by Dirk Jan Ardesch, Lianne H
    Correction NEUROSCIENCE Correction for “Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees,” by Dirk Jan Ardesch, Lianne H. Scholtens, Longchuan Li, Todd M. Preuss, James K. Rilling, and Martijn P. van den Heuvel, which was first published March 18, 2019; 10.1073/pnas.1818512116 (Proc Natl Acad Sci USA 116:7101–7106). The authors wish to note the following: “No new MRI data were acquired for this study. All chimpanzee MRIs were obtained from a data archive of scans obtained prior to the 2015 implementation of US Fish and Wildlife Service and National Institutes of Health regulations governing research with chimpanzees. All the scans reported in this publication were completed by the end of 2012. All chimpanzee MRI scans are part of the National Chimpanzee Brain Resource (http://www.chimpanzeebrain.org).” Published under the PNAS license. Published online April 29, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1906107116 9680 | PNAS | May 7, 2019 | vol. 116 | no. 19 www.pnas.org Downloaded by guest on October 1, 2021 Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees Dirk Jan Ardescha, Lianne H. Scholtensa, Longchuan Lib, Todd M. Preussc,d,e, James K. Rillingc,d,f,g,h, and Martijn P. van den Heuvela,i,1 aConnectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands; bMarcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30329; cYerkes National Primate Research Center, Emory University, Atlanta, GA 30329; dCenter for Translational Social Neuroscience, Emory University, Atlanta, GA 30329; eDepartment of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307; fDepartment of Anthropology, Emory University, Atlanta, GA 30322; gSilvio O.
    [Show full text]
  • Acute Cognitive Deficits After Traumatic Brain Injury Predict Alzheimer's
    GeroScience (2020) 42:1411–1429 https://doi.org/10.1007/s11357-020-00245-6 ORIGINAL ARTICLE Acute cognitive deficits after traumatic brain injury predict Alzheimer’s disease-like degradation of the human default mode network Andrei Irimia & Alexander S. Maher & Nikhil N. Chaudhari & Nahian F. Chowdhury & Elliot B. Jacobs & the Alzheimer’s Disease Neuroimaging Initiative Received: 9 June 2020 /Accepted: 29 July 2020 /Published online: 2 August 2020 # American Aging Association 2020 Abstract Traumatic brain injury (TBI) and Alzheimer’s are leveraged to study the extent to which geriatric mild disease (AD) are prominent neurological conditions whose TBI(mTBI)canleadtoAD-like alteration of resting-state neural and cognitive commonalities are poorly understood. activity in the default mode network (DMN). This network The extent of TBI-related neurophysiological abnormali- is found to contain modules whose extent of AD-like, ties has been hypothesized to reflect AD-like neurodegen- posttraumatic degradation can be accurately prognosticat- eration because TBI can increase vulnerability to AD. ed based on the acute cognitive deficits of geriatric mTBI However, it remains challenging to prognosticate AD risk patients with cerebral microbleeds. Aside from establish- partly because the functional relationship between acute ing a predictive physiological association between geriatric posttraumatic sequelae and chronic AD-like degradation mTBI, cognitive impairment, and AD-like functional deg- remains elusive. Here, functional magnetic resonance im- radation, these findings advance the goal of acutely fore- aging (fMRI), network theory, and machine learning (ML) casting mTBI patients’ chronic deviations from normality along AD-like functional trajectories. The association of Andrei Irimia and Alexander S. Maher contributed equally to this geriatric mTBI with AD-like changes in functional brain work.
    [Show full text]
  • Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury
    Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Irimia, Andrei, Micah C. Chambers, Carinna M. Torgerson, Maria Filippou, David A. Hovda, Jeffry R. Alger, Guido Gerig, et al. 2012. Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Frontiers in Neurology 3:10. Published Version doi://10.3389/fneur.2012.00010 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8462352 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA METHODS ARTICLE published: 06 February 2012 doi: 10.3389/fneur.2012.00010 Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury Andrei Irimia1, Micah C. Chambers 1, Carinna M.Torgerson1, Maria Filippou 2, David A. Hovda2, Jeffry R. Alger 3, Guido Gerig 4, Arthur W.Toga1, Paul M. Vespa2, Ron Kikinis 5 and John D. Van Horn1* 1 Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA 2 Brain Injury Research Center, Departments of Neurology and Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA 3 Department of Radiology, David
    [Show full text]
  • White Matter Dissection and Structural Connectivity of the Human Vertical
    www.nature.com/scientificreports OPEN White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex Tatsuya Jitsuishi1, Seiichiro Hirono2, Tatsuya Yamamoto1,3, Keiko Kitajo1, Yasuo Iwadate2 & Atsushi Yamaguchi1* The vertical occipital fasciculus (VOF) is an association fber tract coursing vertically at the posterolateral corner of the brain. It is re-evaluated as a major fber tract to link the dorsal and ventral visual stream. Although previous tractography studies showed the VOF’s cortical projections fall in the dorsal and ventral visual areas, the post-mortem dissection study for the validation remains limited. First, to validate the previous tractography data, we here performed the white matter dissection in post-mortem brains and demonstrated the VOF’s fber bundles coursing between the V3A/B areas and the posterior fusiform gyrus. Secondly, we analyzed the VOF’s structural connectivity with difusion tractography to link vision-associated cortical areas of the HCP MMP1.0 atlas, an updated map of the human cerebral cortex. Based on the criteria the VOF courses laterally to the inferior longitudinal fasciculus (ILF) and craniocaudally at the posterolateral corner of the brain, we reconstructed the VOF’s fber tracts and found the widespread projections to the visual cortex. These fndings could suggest a crucial role of VOF in integrating visual information to link the broad visual cortex as well as in connecting the dual visual stream. Te VOF is the fber tract that courses vertically at the posterolateral corner of the brain. Te VOF was histori- cally described in monkey by Wernicke1 and then in human by Obersteiner2.
    [Show full text]
  • Disconnectome of the Migraine Brain: a “Connectopathy”
    Silvestro et al. The Journal of Headache and Pain (2021) 22:102 The Journal of Headache https://doi.org/10.1186/s10194-021-01315-6 and Pain RESEARCH ARTICLE Open Access Disconnectome of the migraine brain: a “connectopathy” model Marcello Silvestro1,2†, Alessandro Tessitore1,2†, Giuseppina Caiazzo1,2, Fabrizio Scotto di Clemente1,2,3, Francesca Trojsi1,2, Mario Cirillo1, Fabrizio Esposito1,2, Gioacchino Tedeschi1,2,3 and Antonio Russo1,2,3* Abstract Background: In the past decades a plethora of studies has been conducted to explore resting-state functional connectivity (RS-FC) of the brain networks in migraine with conflicting results probably due to the variability and susceptibility of signal fluctuations across the course of RS-FC scan. On the other hand, the structural substrates enabling the functional communications among the brain connectome, characterized by higher stability and reproducibility, have not been widely investigated in migraine by means of graph analysis approach. We hypothesize a rearrangement of the brain connectome with an increase of both strength and density of connections between cortical areas specifically involved in pain perception, processing and modulation in migraine patients. Moreover, such connectome rearrangement, inducing an imbalance between the competing parameters of network efficiency and segregation, may underpin a mismatch between energy resources and demand representing the neuronal correlate of the energetically dysfunctional migraine brain. Methods: We investigated, using diffusion-weighted MRI imaging tractography-based graph analysis, the graph- topological indices of the brain “connectome”, a set of grey matter regions (nodes) structurally connected by white matter paths (edges) in 94 patients with migraine without aura compared to 91 healthy controls.
    [Show full text]
  • Brain Mapping Using Neuroimaging
    pISSN 2287-5123·eISSN 2287-4445 https://doi.org/10.9729/AM.2016.46.4.179 Review Article Brain Mapping Using Neuroimaging Woo-Suk Tae1, Shin-Hyuk Kang1,2, Byung-Joo Ham1,3, Byung-Jo Kim1,4, Sung-Bom Pyun1,5,* 1Brain Convergence Research Center, Korea University, Seoul 02841, Korea 2Department of Neurosurgery, Korea University College of Medicine, Seoul 02841, Korea 3Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea 4Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea 5Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul 02841, Korea Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance *Correspondence to: imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent Pyun SB, neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness Tel: +82-2-920-6480 analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Fax: +82-2-929-9951 Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and E-mail: [email protected] independent component analysis for fMRI also will also be introduced. Received December 25, 2016 Revised December 28, 2016 Key Words: Brain connectome, Magnetic resonance imaging, Diffusion tensor imaging, Accepted December 28, 2016 Functional magnetic resonance imaging, Brain mapping INTRODUCTION Hu et al., 2016).
    [Show full text]
  • A Population-Based Atlas of the Macroscale Structural Connectome in the Human Brain
    bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted May 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Population-Based Atlas of the Macroscale Structural Connectome in the Human Brain Fang-Cheng Yeh1,2,*, Sandip Panesar1, David Fernandes1, Antonio Meola3, Masanori Yoshino4, Juan C Fernandez-Miranda1, Jean M. Vettel5,6,7, and Timothy Verstynen8,* 1Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 3Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA 4Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan 5U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland, USA. 6Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA. 7University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA 8Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pennsylvania, USA. *Correspondence to: Fang-Cheng Yeh, M.D. Ph.D. Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania Email: [email protected] Timothy D. Verstynen Ph.D. Department of Psychology and Center for the Neural Basis of Computation, Carnegie Mellon University Pittsburgh, PA, USA Email: [email protected] Key words: structural connectome, tractography atlas, connectogram, diffusion MRI bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted May 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Alterations in Reward Network Functional Connectivity Are Associated with Increased Food Addiction in Obese Individuals Soumya Ravichandran1, Ravi R
    www.nature.com/scientificreports OPEN Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals Soumya Ravichandran1, Ravi R. Bhatt1,6, Bilal Pandit1, Vadim Osadchiy1,2, Anita Alaverdyan1, Priten Vora1, Jean Stains1,2,3, Bruce Nalibof1,2,3,4, Emeran A. Mayer1,2,3,4,5 & Arpana Gupta1,2,3,4* Functional neuroimaging studies in obesity have identifed alterations in the connectivity within the reward network leading to decreased homeostatic control of ingestive behavior. However, the neural mechanisms underlying sex diferences in the prevalence of food addiction in obesity is unknown. The aim of the study was to identify functional connectivity alterations associated with: (1) Food addiction, (2) Sex- diferences in food addiction, (3) Ingestive behaviors. 150 participants (females: N = 103, males: N = 47; food addiction: N = 40, no food addiction: N = 110) with high BMI ≥ 25 kg/m2 underwent functional resting state MRIs. Participants were administered the Yale Food Addiction Scale (YFAS), to determine diagnostic criteria for food addiction (YFAS Symptom Count ≥ 3 with clinically signifcant impairment or distress), and completed ingestive behavior questionnaires. Connectivity diferences were analyzed using a general linear model in the CONN Toolbox and images were segmented using the Schaefer 400, Harvard–Oxford Subcortical, and Ascending Arousal Network atlases. Signifcant connectivities and clinical variables were correlated. Statistical signifcance was corrected for multiple comparisons at q < .05. (1) Individuals with food addiction had greater connectivity between brainstem regions and the orbital frontal gyrus compared to individuals with no food addiction. (2) Females with food addiction had greater connectivity in the salience and emotional regulation networks and lowered connectivity between the default mode network and central executive network compared to males with food addiction.
    [Show full text]
  • Corticopallidal Connectome of the Globus Pallidus Externus in Humans: an Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
    ORIGINAL RESEARCH FUNCTIONAL Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography X S.S. Grewal, X V.M. Holanda, and X E.H. Middlebrooks ABSTRACT BACKGROUND AND PURPOSE: Electrophysiologic abnormalities of the globus pallidus externus have been shown in several disease processes including Parkinson disease, dystonia, and Huntington disease. However, the connectivity, nuclear structure, and function of the globus pallidus externus are still not well-understood. Increasing evidence for the existence of direct corticopallidal connections chal- lenges traditional understanding of the connectivity of the globus pallidus externus; nevertheless, these corticopallidal connections have yet to be fully characterized in humans. The objective of this study was to assess the corticopallidal connections of the globus pallidus externus by means of probabilistic diffusion-weighted MR imaging tractography using high-resolution, multishell data. MATERIALS AND METHODS: Imaging data from the open-access Human Connectome Project data base were used to perform proba- bilistic tractography between the globus pallidus externus and the cerebral cortex using 34 distinct cortical regions. Group averages were calculated for normalized percentages of tracts reaching each of the cortical targets, and side-to-side comparison was made. RESULTS: Cortical connectivity was demonstrated between the globus pallidus externus and multiple cortical regions, including direct connection to putative sensorimotor, associative, and limbic areas. Connectivity patterns were not significantly different between the right and left hemispheres with the exception of the frontal pole, which showed a greater number of connections on the right (P ϭ .004). CONCLUSIONS: Our in vivo study of the human globus pallidus externus using probabilistic tractography supports the existence of extensive corticopallidal connections and a tripartite functional division, as found in animal studies.
    [Show full text]
  • Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology
    bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted January 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology Fang-Cheng Yeh1,2,*, Sandip Panesar1, David Fernandes1, Antonio Meola3, Masanori Yoshino4, Juan C Fernandez-Miranda1, Jean M. Vettel5,6,7, and Timothy Verstynen8,* 1Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 3Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA 4Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan 5U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland, USA. 6Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA. 7University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA 8Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pennsylvania, USA. *Correspondence to: Fang-Cheng Yeh, M.D. Ph.D. Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania Email: [email protected] Timothy D. Verstynen Ph.D. Department of Psychology and Center for the Neural Basis of Computation, Carnegie Mellon University Pittsburgh, PA, USA Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted January 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]