CPU Benchmarks - List of Benchmarked Cpus

Total Page:16

File Type:pdf, Size:1020Kb

CPU Benchmarks - List of Benchmarked Cpus 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Benchmarks CPU Benchmarks Over 1,000,000 CPUs Benchmarked Notebook / Laptop CPU List 15,6" Dell Vostro Below is an alphabetical list of all CPU types that appear in the charts. Clicking on a specific 5502 i5-1135G7/ … processor name will take you to the chart it appears in and will highlight it for you. Results Notebook / Laptop for Single CPU Systems and Multiple CPU Systems are listed separately. 15,6" MSI GF63 i5-10500H/ 16GB/ … Find CPU Notebook / Laptop 15,6" Dell Vostro 3500 i5-1135G7/ … x-kom.pl Single CPU Systems Multi CPU Systems CPUS High End Single CPU Systems High Mid Range Last updated on the 9th of July 2021 Low Mid Range Low End Column CPU Mark Rank CPU Value Price Best Value CPU Name (higher is (lower is (higher is (USD) (On Market) better) better) better) Best Value XY AArch64 rev 0 (aarch64) 2,499 1581 NA NA Scatter Best Value AArch64 rev 1 (aarch64) 2,314 1657 NA NA (All time) AArch64 rev 2 (aarch64) 1,956 1849 NA NA New Desktop AArch64 rev 4 (aarch64) 1,653 2035 NA NA New Laptop AC8257V/WAB 693 2788 NA NA Single Thread AMD 3015e 2,678 1522 NA NA Systems with AMD 3020e 2,635 1531 NA NA Multiple CPUs Overclocked AMD 4700S 17,756 244 NA NA Power AMD A4 Micro-6400T APU 1,004 2502 NA NA Performance CPU Mark by Socket AMD A4 PRO-3340B 1,706 1995 NA NA Type Cross-Platform CPU AMD A4 PRO-7300B APU 1,481 2150 NA NA Performance AMD A4 PRO-7350B 1,024 2485 NA NA CPU Mega List AMD A4-1200 APU 445 3031 NA NA Search Model AMD A4-1250 APU 428 3051 NA NA 0 AMD A4-3300 APU 961 2549 9.09 $105.75* Compare https://www.cpubenchmark.net/cpu_list.php AMD A4 3300M APU 22 86 $29 99* 1/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs AMD A4-3300M APU CPU686 Mark Rank2798 CPU22.86 Value $29.99* Price CPU Name (higher is (lower is (higher is Common (USD) AMD A4-3305M APU better)820 better)2666 39.39better) $20.81* Most CPUBenchmarked Benchmarks AMD A4-3310MX APU 785 2700 NA NA AMD A4-3320M APU 640 2843 16.42 $39.00* AMD vs Intel Market Share AMD A4-3330MX APU 681 2801 NA NA Year on Year Performance AMD A4-3400 APU 1,031 2477 9.51 $108.50* AMD A4-3420 APU 1,052 2465 7.74 $136.00* AMD A4-4000 APU 1,158 2374 38.60 $29.99 AMD A4-4020 APU 1,214 2329 13.34 $91.00* AMD A4-4300M APU 997 2508 33.40 $29.86* AMD A4-4355M APU 816 2671 NA NA AMD A4-5000 APU 1,283 2275 NA NA AMD A4-5050 APU 1,328 2237 NA NA AMD A4-5100 APU 1,346 2222 NA NA AMD A4-5150M APU 1,129 2396 NA NA AMD A4-5300 APU 1,325 2244 49.17 $26.95* AMD A4-5300B APU 1,232 2317 47.49 $25.95* AMD A4-6210 APU 1,459 2159 NA NA AMD A4-6250J APU 1,685 2013 NA NA Zamów teraz AMD A4-6300 APU 1,413 2182 56.53 $24.99 Manufaktura Kawy AMD A4-6300B APU 1,328 2238 47.51 $27.95* AMD A4-6320 APU 1,563 2097 22.34 $69.99* AMD A4-7210 APU 1,646 2042 NA NA AMD A4-7300 APU 1,497 2141 10.69 $139.95* AMD A4-9120 1,257 2299 NA NA AMD A4-9120C 782 2707 NA NA AMD A4-9120e 907 2599 NA NA AMD A4-9125 1,211 2331 NA NA AMD A6 Micro-6500T APU 1,146 2383 NA NA AMD A6 PRO-7050B APU 1,015 2493 NA NA AMD A6 PRO-7400B 1,555 2104 NA NA AMD A6-1450 APU 1,033 2475 NA NA AMD A6-3400M APU 1,166 2367 40.22 $29.00* AMD A6-3410MX APU 1,152 2380 288.73 $3.99* AMD A6-3420M APU 1,248 2303 NA NA AMD A6-3430MX APU 1,331 2235 NA NA https://www.cpubenchmark.net/cpu_list.php 2/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Mark Rank CPU Value Price AMDCPU Name A6-3500 APU (higher1,387 is (lower2205 is 9.44(higher is $147.00* (USD) better) better) better) CPU Benchmarks AMD A6-3600 APU 1,636 2051 65.56 $24.95* AMD A6-3620 APU 1,741 1976 77.40 $22.49* AMD A6-3650 APU 2,030 1810 11.79 $172.19* AMD A6-3670 APU 2,040 1806 11.55 $176.59* AMD A6-4400M APU 995 2512 36.86 $27.00* AMD A6-4455M APU 783 2706 NA NA AMD A6-5200 APU 1,630 2056 NA NA AMD A6-5345M APU 1,122 2404 NA NA AMD A6-5350M APU 1,082 2440 32.68 $33.12* AMD A6-5357M APU 1,260 2296 NA NA AMD A6-5400B APU 1,412 2184 48.80 $28.94* AMD A6-5400K APU 1,249 2302 24.01 $52.02* AMD A6-6310 APU 1,681 2015 NA NA AMD A6-6400B APU 1,616 2070 NA NA AMD A6-6400K APU 1,435 2174 28.14 $50.99 AMD A6-6420B APU 1,550 2107 NA NA AMD A6-6420K APU 1,538 2117 10.26 $149.99* AMD A6-7000 1,010 2498 NA NA AMD A6-7310 APU 1,698 2003 NA NA AMD A6-7400K APU 1,592 2088 39.80 $39.99 AMD A6-7470K 1,744 1974 14.54 $120.00* AMD A6-7480 1,929 1862 43.85 $43.99* AMD A6-8500P 1,452 2163 NA NA AMD A6-8550 1,604 2079 NA NA AMD A6-9200 1,062 2455 NA NA AMD A6-9210 1,177 2359 NA NA AMD A6-9220 1,257 2298 NA NA AMD A6-9220C 1,208 2334 NA NA AMD A6-9220e 959 2552 NA NA AMD A6-9225 1,337 2230 NA NA AMD A6-9230 1,279 2278 NA NA AMD A6-9400 2,717 1502 NA NA AMD A6-9500 1,871 1900 24.98 $74.88 AMD A6-9500E 1,841 1921 24.55 $74.99 https://www.cpubenchmark.net/cpu_list.php 3/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Mark Rank CPU Value Price AMDCPU Name A8 PRO-7150B APU (higher1,569 is (lower2095 is (higherNA is NA (USD) better) better) better) CPU Benchmarks AMD A8 PRO-7600B APU 2,736 1496 NA NA AMD A8-3500M APU 1,232 2318 20.56 $59.95* AMD A8-3510MX APU 1,483 2148 19.24 $77.11* AMD A8-3520M APU 1,395 2200 25.37 $55.00* AMD A8-3530MX APU 1,477 2152 NA NA AMD A8-3550MX APU 1,579 2092 NA NA AMD A8-3800 APU 1,939 1858 17.64 $109.95* AMD A8-3820 APU 2,019 1819 44.91 $44.95* AMD A8-3850 APU 2,124 1761 16.38 $129.68* AMD A8-3870K APU 2,341 1648 93.12 $25.14* AMD A8-4500M APU 1,655 2032 23.66 $69.95* AMD A8-4555M APU 1,316 2252 NA NA AMD A8-5500 APU 2,567 1558 43.55 $58.95* AMD A8-5500B APU 2,663 1524 54.30 $49.04* AMD A8-5545M APU 1,536 2119 NA NA AMD A8-5550M APU 1,869 1901 NA NA AMD A8-5557M APU 1,719 1987 NA NA AMD A8-5600K APU 2,748 1495 55.02 $49.95* AMD A8-6410 APU 1,769 1960 NA NA AMD A8-6500 APU 2,785 1483 59.83 $46.55 AMD A8-6500B APU 2,789 1478 55.84 $49.95* AMD A8-6500T APU 1,816 1936 30.29 $59.95* AMD A8-6600K APU 2,969 1417 71.80 $41.35 AMD A8-7050 1,129 2397 NA NA AMD A8-7100 APU 1,677 2021 NA NA AMD A8-7200P 2,156 1748 NA NA AMD A8-7410 APU 1,799 1942 NA NA AMD A8-7500 3,878 1186 NA NA AMD A8-7600 APU 3,211 1342 45.75 $70.19* AMD A8-7650K 2,941 1430 46.04 $63.87 AMD A8-7670K 3,028 1398 33.65 $89.99 AMD A8-7680 3,535 1255 70.59 $50.08* AMD A8-8600P 2,231 1703 NA NA AMD A8-8650 2,774 1487 NA NA https://www.cpubenchmark.net/cpu_list.php 4/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Mark Rank CPU Value Price AMDCPU Name A8-9600 (higher3,256 is (lower1321 is 34.29(higher is $94.98 (USD) better) better) better) CPU Benchmarks AMD A9-9400 1,407 2192 NA NA AMD A9-9410 1,517 2127 NA NA AMD A9-9420 1,530 2120 NA NA AMD A9-9420e 1,127 2398 NA NA AMD A9-9425 1,554 2105 NA NA AMD A9-9430 1,678 2019 NA NA AMD A9-9820 3,662 1229 NA NA AMD A10 Micro-6700T APU 1,291 2268 NA NA AMD A10 PRO-7350B APU 1,910 1877 NA NA AMD A10 PRO-7800B APU 3,194 1346 NA NA AMD A10 PRO-7850B APU 3,406 1282 23.01 $148.02* AMD A10-4600M APU 1,896 1889 19.15 $98.99* AMD A10-4655M APU 1,606 2077 NA NA AMD A10-4657M APU 1,759 1966 NA NA AMD A10-5700 APU 2,756 1492 45.97 $59.95* AMD A10-5745M APU 1,716 1990 NA NA AMD A10-5750M APU 1,856 1907 19.98 $92.86* AMD A10-5757M APU 1,997 1832 NA NA AMD A10-5800B APU 2,897 1442 64.40 $44.99* AMD A10-5800K APU 2,920 1439 61.08 $47.80* AMD A10-6700 APU 3,087 1386 52.64 $58.65 AMD A10-6700T APU 2,311 1659 15.66 $147.61* AMD A10-6790K APU 3,017 1401 59.11 $51.04 AMD A10-6800B APU 2,824 1471 22.06 $128.02* AMD A10-6800K APU 3,156 1358 40.01 $78.87 AMD A10-7300 APU 1,680 2016 NA NA AMD A10-7400P 2,071 1787 NA NA AMD A10-7700K APU 3,100 1379 48.85 $63.46 AMD A10-7800 APU 3,120 1373 53.91 $57.87 AMD A10-7850K APU 3,415 1278 46.88 $72.85 AMD A10-7860K 3,280 1313 33.52 $97.88 AMD A10-7870K 3,506 1263 15.44 $226.99* AMD A10-7890K 3,535 1254 21.06 $167.85 AMD A10-8700P 2,210 1718 NA NA https://www.cpubenchmark.net/cpu_list.php 5/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Mark Rank CPU Value Price AMDCPU Name A10-8750 (higher3,299 is (lower1306 is (higherNA is NA (USD) better) better) better) CPU Benchmarks AMD A10-8850 3,525 1257 NA NA AMD A10-9600P 2,222 1709 NA NA AMD A10-9620P 2,509 1577 NA NA AMD A10-9630P 2,947 1424 NA NA AMD A10-9700 3,521 1259 29.34 $119.99 AMD A10-9700E 3,151 1361 15.02 $209.77* AMD A12-9700P 2,366 1633 NA NA AMD A12-9720P 2,612 1540 NA NA AMD A12-9730P 3,172 1350 NA NA AMD A12-9800 3,175 1349 28.87 $109.98 AMD A12-9800E 3,410 1280 11.48 $296.96* AMD Athlon64 X2 Dual Core 4600+ 803 2682 NA NA AMD Athlon 64 2000+ 154 3409 NA NA AMD Athlon 64 2600+ 243 3281 NA NA AMD Athlon 64 2800+ 295 3202 2.95 $99.99* AMD Athlon 64 3000+ 303 3189 15.13 $20.00* AMD Athlon 64 3100+ 484 2989 NA NA AMD Athlon 64 3200+ 332 3162 2.21 $149.95* AMD Athlon 64 3300+ 375 3105 NA NA AMD Athlon 64 3400+ 375 3104 3.75 $99.95* AMD Athlon 64 3500+ 366 3113 4.58 $79.95* AMD Athlon 64 3700+ 394 3082 4.38 $89.95* AMD Athlon 64 3800+ 292 3207 2.23 $131.01* AMD Athlon 64 4000+ 321 3168 3.22 $99.95* AMD Athlon 64 FX-55 404 3070 6.22 $65.00* AMD Athlon 64 FX-57 517 2962 NA NA AMD Athlon 64 FX-59 465 3010 NA NA AMD Athlon 64 FX-60 Dual Core 709 2774 NA NA AMD Athlon 64 FX-62 Dual Core 943 2566 NA NA AMD Athlon 64 FX-74 972 2536 1.95 $499.50* AMD Athlon 64 X2 3800+ 566 2920 NA NA AMD Athlon 64 X2 Dual Core 3400+ 531 2947 NA NA AMD Athlon 64 X2 Dual Core 3600+ 660 2824 9.67 $68.25* AMD Athlon 64 X2 Dual Core 3800+ 627 2854 NA NA https://www.cpubenchmark.net/cpu_list.php 6/101 9.07.2021 PassMark - CPU Benchmarks - List of Benchmarked CPUs CPU Mark Rank CPU Value Price AMDCPU Name Athlon 64 X2 Dual Core 4000+ (higher632 is (lower2851 is (higherNA is NA
Recommended publications
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Operating Guide
    Operating Guide EPIA-P830 Mainboard EPIA-P830 Operating Guide Table of Contents Table of Contents .......................................................................................................................................................................................... i VIA EPIA-P830 overview.............................................................................................................................................................................1 VIA EPIA-P830 layout ..................................................................................................................................................................................2 VIA EPIA-P830 specifications ...................................................................................................................................................................3 VIA EPIA-P830 processor SKUs ...............................................................................................................................................................4 VIA VX900 chipset overview.....................................................................................................................................................................5 VIA EPIA-P830 and P830-A board dimensions.................................................................................................................................6 VIA P830-B board dimensions.................................................................................................................................................................7
    [Show full text]
  • ​5G: Perspectives from a Chipmaker 5G Electronic Workshop, LETI Innovation Days – June 2019
    ​5G: Perspectives from a Chipmaker 5G electronic workshop, LETI Innovation Days – June 2019 Guillaume Vivier Sequans communications 1 ©2019 Sequans Communications |5G: Perspective from a chip maker – June 2019 MKT-FM-002-R15 Outline • Context, background, market • 5G chipmaker: process technology thoughts and challenges • Conclusion 2 ©2019 Sequans Communications |5G: Perspective from a chip maker – June 2019 5G overall landscape • 3GPP standardization started in Sep 2015 – 5G is wider than RAN (includes new core) – Rel. 15 completed in Dec 2018. ASN1 freeze for 4G-5G migration options in June 19 – Rel. 16 on-going, to be completed in Dec 2019 (June 2020) • Trials and more into 201 operators, 80+ countries (source GSA) • Commercial deployments announced in – Korea, USA, China, Australia, UAE 3 ©2019 Sequans Communications |5G: Perspective from a chip maker – June 2019 Ericsson Mobility Report Nov 2018 • “In 2024, we project that 5G will reach 40 percent population coverage and 1.5 billion subscriptions“ • Interestingly, the report highlights the fact that IoT will continue to grow, beyond LWPA, leveraging higher capability of LTE and 5G 4 ©2019 Sequans Communications |5G: Perspective from a chip maker – June 2019 5G overall landscape • eMBB: smartphone and FWA market – Main focus so far from the ecosystem • URLLC: the next wave – Verticals: Industry 4.0, gaming, media Private LTE/5G deployment, … – V2X and connected car • mMTC: – LPWA type of communication is served by cat-M and NB-IoT – 5G opens the door to new IoT cases not served by LPWA, • Example surveillance camera with image processing on the device • Flexibility is key – From Network side, NVF, SDN, Slicing, etc.
    [Show full text]
  • Apparecchiature Medicali: Il Ruolo Delle Nanotecnologie
    EO Medical APPAreCCHIAture MeDICALI: IL ruoLo DeLLe NANoteCNoLoGIe IN queSto NuMero III Mercati/Attualità VIII Stanford, in fase di sviluppo una ‘pelle elettronica’ X Dialisi direttamente a casa XII Affrontare richieste ad alte prestazioni per la visualizzazione di immagini mediche XIV Criteri di scelta per alimentatori conformi a Iec60601-1 3a edizione XVII News Foto: Future Electronics Murata MEMS Solutions for Medical and Healthcare Enabling MEMS Sensing Improved Care Elements (Dies) SCG12S and SCG14S In medical and healthcare applications Vertical Accelerometer Elements (Dies) Murata’s medical MEMS sensors enable • Size 3mm x 2.12mm x 1.95 or 1.25mm • Various measuring ranges possible (1 - 12g) improved care and a better quality of life • Proven capacitive 3D-MEMS Technology for patients and elderly people. Medical sensors increase the intelligence of life supporting SCG10X and SCG10Z Horizontal Accelerometer Elements (Dies) transplants, and they can be used in new types of patient • Size SCG10X: 2.55mm x 2.95mm x 1.91mm monitoring applications that allow patients to lead more • Size SCG10Z: 1.50mm x 1.70mm x 1.83mm independent lives. Detecting signals triggered by symptoms • Various measuring ranges possible (1 - 12g) • Proven capacitive 3D-MEMS Technology helps optimize medication and prevent serious attacks of illness. Murata’s unique MEMS design, which combines single SCB10H crystal silicon and glass, ensures exceptional reliability, Pressure Sensor Elements (Dies) unprecedented accuracy and excellent stability over time. The • Size 1.4mm x 1.4mm x 0.85mm • High pressure shock survival (> 200 bar) power requirements of these medical sensors are extremely • Various pressure ranges possible (1.2 - 25 bar) low, which gives them a significant advantage in small • Proven capacitive 3D-MEMS technology battery-operated devices.
    [Show full text]
  • Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University the Intel® 4004 Microprocessor, Introdu
    Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University The 1st Microprocessor The Intel® 4004 microprocessor, introduced in November 1971 An electronics revolution that changed our world. There were no customer‐ programmable microprocessors on the market before the 4004. It propelled software into the limelight as a key player in the world of digital electronics design. 4004 Microprocessor Display at New Intel Museum A Japanese calculator maker (Busicom) asked to design: A set of 12 custom logic chips for a line of programmable calculators. Marcian E. "Ted" Hoff Recognized the integrated circuit technology (of the day) had advanced enough to build a single chip, general purpose computer. Federico Faggin to turn Hoff's vision into a silicon reality. (In less than one year, Faggin and his team delivered the 4004, which was introduced in November, 1971.) The world's first microprocessor application was this Busicom calculator. (sold about 100,000 calculators.) Measuring 1/8 inch wide by 1/6 inch long, consisting of 2,300 transistors, Intel’s 4004 microprocessor had as much computing power as the first electronic computer, ENIAC. 2 inch 4004 and 12 inch Core™2 Duo wafer ENIAC, built in 1946, filled 3000‐cubic‐ feet of space and contained 18,000 vacuum tubes. The 4004 microprocessor could execute 60,000 operations per second Running frequency: 108 KHz Founders wanted to name their new company Moore Noyce. However the name sounds very much similar to “more noise”. "Only the paranoid survive". Moore received a B.S. degree in Chemistry from the University of California, Berkeley in 1950 and a Ph.D.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • EDIT THIS 2021 ISRI 1201 Post-Hearing Letter 050621
    Juelsgaard Intellectual Property and Innovation Clinic Mills Legal Clinic Stanford Law School Crown Quadrangle May 7, 2021 559 Nathan Abbott Way Stanford, CA 94305-8610 [email protected] Regan Smith 650.724.1900 Mark Gray United States Copyright Office [email protected] [email protected] Re: Docket No. 2020-11 Exemptions to Prohibition Against Circumvention of Technological Measures Protecting Copyrighted Works Dear Ms. Smith and Mr. Gray: I write to respond to your April 27 post-hearing letter requesting the materials that I referenced during the April 21 hearing related to Proposed Class 10 (Computer Programs – Unlocking) that were not included in our written comments. In particular, I cited to three reports from the Global mobile Suppliers Association (“GSA”) to illustrate the rapid increase in cellular-enabled devices with 5G capabilities in the last three years. In March 2019, GSA had identified 33 announced 5G devices from 23 vendors in 7 different form factors.1 By March 2020, GSA had identified 253 announced 5G devices from 81 vendors in 16 different form factors, including the first 5G-enabled laptops, TVs, and tablets.2 And by April 2021, GSA had identified 703 announced 5G devices from 122 vendors in 22 different form factors.3 It should be noted that some of the 22 form factors, such as 5G modules,4 can be deployed across a wide range of use cases that are not directly tracked by the GSA reports.5 For example, one distributor of Quectel’s 5G modules described the target applications as including: Telematics & transport – vehicle tracking, asset tracking, fleet management Energy – electricity meters, gas/water meter, smart grid Payment – wireless pos [point of service], cash register, ATM, vending machine Security – surveillance, detectors Smart city – street lighting, smart parking, sharing economy Gateway – consumer/industrial router 1 GSA, 5G Device Ecosystem (Mar.
    [Show full text]
  • 5G, Lte & Iot Components Vendors Profiled (28)
    5G, LTE & IOT COMPONENTS VENDORS PROFILED (28) Altair Semiconductor Ltd., a subsidiary of Sony Corp. / www.altair-semi.com Analog Devices Inc. (NYSE: ADI) / www.analog.com ARM Ltd., a subsidiary of SoftBank Group Corp. / www.arm.com Blu Wireless Technology Ltd. / www.bluwirelesstechnology.com Broadcom Corp. (Nasdaq: BRCM) / www.broadcom.com Cadence Design Systems Inc. / www.cadence.com Ceva Inc. (Nasdaq: CEVA) / www.ceva-dsp.com eASIC Corp. / www.easic.com GCT Semiconductor Inc. / www.gctsemi.com HiSilicon Technologies Co. Ltd. / www.hisilicon.com Integrated Device Technology Inc. (Nasdaq: IDTI) / www.idt.com Intel Corp. (Nasdaq: INTC) / www.intel.com Lime Microsystems Ltd. / www.limemicro.com Marvell Technology Group Ltd. (Nasdaq: MRVL) / www.marvell.com MediaTek Inc. / www.mediatek.com Microsemi Corp., a subsidiary of Microchip Technology Inc. (Nasdaq: MCHP) / www.microsemi.com MIPS, an IP licensing business unit of Wave Computing Inc. / www.mips.com Nordic Semiconductor ASA (OSX: NOD) / www.nordicsemi.com NXP Semiconductors N.V. (Nasdaq: NXPI) / www.nxp.com Octasic Inc. / www.octasic.com Peraso Technologies Inc. / www.perasotech.com Qualcomm Inc. (Nasdaq: QCOM) / www.qualcomm.com Samsung Electronics Co. Ltd. (005930:KS) / www.samsung.com Sanechips Technology Co. Ltd., a subsidiary of ZTE Corp. (SHE: 000063) / www.sanechips.com.cn Sequans Communications S.A. (NYSE: SQNS) / www.sequans.com Texas Instruments Inc. (NYSE: TXN) / www.ti.com Unisoc Communications Inc., a subsidiary of Tsinghua Unigroup Ltd. / www.unisoc.com Xilinx Inc. (Nasdaq: XLNX) / www.xilinx.com © HEAVY READING | AUGUST 2018 | 5G/LTE BASE STATION, RRH, CPE & IOT COMPONENTS .
    [Show full text]
  • Communication Theory II
    Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800.
    [Show full text]
  • 956830 Deliverable D2.1 Initial Vision and Requirement Report
    European Core Technologies for future connectivity systems and components Call/Topic: H2020 ICT-42-2020 Grant Agreement Number: 956830 Deliverable D2.1 Initial vision and requirement report Deliverable type: Report WP number and title: WP2 (Strategy, vision, and requirements) Dissemination level: Public Due date: 31.12.2020 Lead beneficiary: EAB Lead author(s): Fredrik Tillman (EAB), Björn Ekelund (EAB) Contributing partners: Yaning Zou (TUD), Uta Schneider (TUD), Alexandros Kaloxylos (5G IA), Patrick Cogez (AENEAS), Mohand Achouche (IIIV/Nokia), Werner Mohr (IIIV/Nokia), Frank Hofmann (BOSCH), Didier Belot (CEA), Jochen Koszescha (IFAG), Jacques Magen (AUS), Piet Wambacq (IMEC), Björn Debaillie (IMEC), Patrick Pype (NXP), Frederic Gianesello (ST), Raphael Bingert (ST) Reviewers: Mohand Achouche (IIIV/Nokia), Jacques Magen (AUS), Yaning Zou (TUD), Alexandros Kaloxylos (5G IA), Frank Hofmann (BOSCH), Piet Wambacq (IMEC), Patrick Cogez (AENEAS) D 2.1 – Initial vision and requirement report Document History Version Date Author/Editor Description 0.1 05.11.2020 Fredrik Tillman (EAB) Outline and contributors 0.2 19.11.2020 All contributors First complete draft 0.3 18.12.2020 All contributors Second complete draft 0.4 21.12.2020 Björn Ekelund Third complete draft 1.0 21.12.2020 Fredrik Tillman (EAB) Final version List of Abbreviations Abbreviation Denotation 5G 5th Generation of wireless communication 5G PPP The 5G infrastructure Public Private Partnership 6G 6th Generation of wireless communication AI Artificial Intelligence ASIC Application
    [Show full text]
  • Evolution Des X86befehlssatzes Und Seiner Erweiterungen
    Technische Universität Dresden Evolution des x86-Befehlssatzes und seiner Erweiterungen Peter Ebert Dresden, 15.07.2009 Einführung · Überblick & Historie · Konkurrierende Befehlssatzarchitekture n · Befehlsarten · Registerstruktur · x87 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 2/24 Übersicht & Historie · IBM 1981: erster PC · x86-Architektur verwendet einen CISC-Befehlssatz · alle Prozessoren seit dem Pentium Pro sind aber hybride CISC/RISC-Prozessoren 1978 1. Gen.: 8086 1982 2. Gen.: 80286 1985 3. Gen.: 80386 IA-32 1989 4. Gen.: 80486 1993 5. Gen.: Pentium MMX 1995 6. Gen.: P2, P3 3DNow!, SSE 1999 7. Gen.: Athlon (XP), P4 SSE2 2003 8. Gen.: Opteron x86-64 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 3/24 Konkurrierende Befehlssatzarchitekturen · ARM (Acorn Risc Machine) RISC-Architektur 1983 vom englischen Computerhersteller Acorn. Einsatz vor allem im eingebetteten Bereich z.B.: Mobiltelefonen, PDAs, Routern, iPod, iPhone, Internet Tablets von Nokia und den neueren PDAs von ASUS, Konsolen wie der Nintendo DS, der GP2X und die Pandora. · PowerPC (Performance optimization with enhanced RISC Performance Chip) 1991 durch ein Konsortium aus Apple, IBM und Motorola. z.B.: Nintendo GameCube und Wii, Xbox 360 von Microsoft, Playstation 3 von Sony und in vielen eingebetteten Systemen. Auch benutzen PKW und Produkte in der Luft- und Raumfahrt · SPARC (Scalable Processor ARChitecture) Von Sun Microsystems entwickelt ab 1985 und vermarktete ab 1987, offene Architektur, 1995 64-Bit-Erweiterung (UltraSparc) 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 4/24 Befehlsarten · Transferbefehlen werden Daten innerhalb des Systems bewegt. Die Daten werden dabei nur kopiert, d. h. bleiben an ihrem Quellort unverändert.
    [Show full text]