Jurassic Paleobiogeography of the Conterminous United in Its Continental Setting

Total Page:16

File Type:pdf, Size:1020Kb

Jurassic Paleobiogeography of the Conterminous United in Its Continental Setting Jurassic Paleobiogeography of the Conterminous United in Its Continental Setting GEOLOGICAL SLFRV£Y PRQFESSIQNAL PAPER Jurassic Paleobiogeography of the Conterminous United States in Its Continental Setting By RALPH W. IMLAY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1062 Paleogeographic changes in the United States during Jurassic time are revealed by the distribution, succession, and differentiation of molluscan faunas; by gross stratigraphic changes; by the position, extent, and duration of unconformities; and by comparisons with Jurassic data elsewhere in North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Catalog-card No. 80-600017 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03105-1 CONTENTS Page 1 39 3 39 3 39 Paleobiogeographic setting ————————————————————— 4 Gulf region of the United States ———————————— 46 4 48 4 49 17 51 18 i!. astern L^ninudJiua and west iexas-~™™-™™™~~~~™™-~™ 51 19 JT ddiic v^oa&t region ——————————————————————— ——————— ————— 51 Skllpppcai/YKl rj-p aTYlTYiri'nii'PQ 3TlH rlllp'hJf.G \\\T C^QOTAC — — — — — — ______ 19 51 19 52 19 Western California and southwestern Oregon ——— — 61 19 Eastern Oregon and western Idaho —————————— 63 21 66 63,10013.11™ - - ——————————— 23 66 Bathonisn™™— • _ • _ — — — — — _ 25 67 29 Montana and North Dakota ——————————————— 67 o±±:::z::::::::::i:i:z:::i:z::ii 30 Southeastern Idaho to western South Dakota ————— 82 Tith ^ glEn 30 91 31 93 31 96 Lower Tithonian of the Gulf region ———————— 32 Midcontinent region —————————————————————— 99 Upper Tithonian of the Gulf region ——————————— 34 99 A.Tmnonite seouences - - ————————— —— 34 102 V' f\ o oiyyt /iflfl- Dlf Wl » /TF?" //? Q Q TY1TY1 rty.1 i" P 9 CCPTY1 V_l Q OTP _____ 34 102 Substeueroceras-Proniceras ammonite assem- Gulf of Mexico and nearby regions —————————————— 103 35 106 rPi'fliriyii£iyi n"f f^fllifrviTiiQ ayiH f}v&crf\n — — 36 108 rPl'f Vl/\y»igy» rt-p /"^ayiaHn 3TlH Aloclrs ———____-.__——____ _____ 36 114 Intercontinental faunal relationships ———————————— 37 Index ———————— 127 ILLUSTRATIONS FIGURE 1. Jurassic basins of deposition in North America ———————————————— 2-12. Maps showing distribution of Jurassic fossils and inferred seas in North America: 2 6 J-j 7 8 9 ^\ Rai oClciri™—™"—— — ~ 10 11 12 9. Early to early middle Oxfordian————————— 13 10. Late middle Oxfordian to early Kimmeridgian-- 14 11. Late Kimmeridgian to early Tithonian ————— 15 12. 16 13. Succession and correlation of Hettangian to Toarcian ammonites in North America: A. Mexico to southern British Columbia —————————————————————— 20 B. Northern British Columbia to East Greenland————————————————— 21 III IV CONTENTS Page FIGURE 14. Succession and correlation of Bajocian to Callovian ammonites in North America: A. Mexico to western interior region-——————————————————————————————————————————————— 22 B. British Columbia to East Greenland—————————————————————————————————————————————— 23 15. Succession and correlation of Oxfordian to Tithonian ammonites in North America: A. Gulf of Mexico, Pacific Coast, and western interior region————————————————————————————————— 24 B. Southwestern Canada to Greenland ——————————————————————————————————————————— 25 16. Comparisons of the Tithonian and Volgian Stages and the suggested subdivisions of the Tithonian————————————— 26 17. Index map of Jurassic areas in the Gulf of Mexico and nearby regions—————————————————————————————— 40 18. Index map of Jurassic areas in the Pacific Coast region from California and Nevada to Washington————————————— 41 19. Index map of Jurassic areas in the Pacific Coast region from British Columbia to southern Alaska————————————— 42 20. Index map of Jurassic areas in the western interior region————————————————————————————————————— 43 21. Correlations and comparisons of Jurassic rocks in the Gulf of Mexico and nearby regions: A. Western Cuba to Victoria, Mexico————————————————————————————————————————-—————— 44 B. Huasteca area, Mexico, to Malone Mountains, Tex————————————————————————————————————— 45 22. Correlations and comparisons of Jurassic rocks in the Pacific Coast region in California, Nevada, and western to east- central Oregon: A. Western Nevada and eastern California ——————————————————————————————————————————— 54 B. Western California to east-central Oregon —————————————————————————————————————————— 55 23. Correlations and comparisons of Jurassic rocks in the Pacific Coast region from eastern Oregon and western Idaho to north- \VCStcFIi WclSiiliigjT'OIi --—-—™™~---——-—.———.„—.—.——_______.________.___..__._-.-._________.______.„_._______-..__._______-_.______.»-_,.____________.._._ u\/ 24. Correlations and comparisons of Jurassic rocks in the Pacific Coast region in British Columbia, Yukon Territory, and south­ ern Alaska: A. Southwestern to central British Columbia—————————————————————————————————————————— 58 B. Northwestern British Columbia to southern Alaska———————————————————————————————————— 59 25. Correlations and comparisons of Jurassic rocks in the western interior region from southwestern Alberta through central Montana to southern Saskatchewan: A.. OOUtllin' GStGiTi A.lDCFt<** tO CCni/IclI JYLOntEliicl™™'—"~~~——-—<—._-___—______—________—_______—_____—__..___——______________________________— B. Central Montana to southern Saskatchewan————————————————————————————————————————— 69 26. Correlations and comparisons of Jurassic rocks in the western interior region from southeastern Idaho to southwestern South Dakota: A. Ammon area, Idaho, to Red Creek, Wyo——————————————————————————————————————————— 70 B. Hyattville area in north-central Wyoming to Minnekahta area, South Dakota————————————————————— 71 27. Correlations and comparisons of Jurassic rocks in the western interior region from north-central Utah to north-central Colorado: A. Burr Fork to Whiterocks Canyon, Utah———-*••——————————————————————————————————————— 72 B. Dinosaur Quarry, Utah, to Hahns Peak, Colo———————————————————————————————————————— 73 28. Correlations and comparisons of Jurassic rocks in the western interior region from north-central Utah to southwestern Colorado: A. Monks Hollow to Black Dragon Canyon, Utah——————————————————————————————————————— 74 B. San Rafael River, Utah, to McElmo Canyon, Colo-———-—~—————~———~—————————————-—— 75 29. Correlations and comparisons of Jurassic rocks in the western interior region from southwestern Utah to northeastern Arizona: A. Gunlock to Brown Canyon, Utah——————————————————————————————————————————————— 76 B. Little Bull Valley, Utah, to Cow Springs, Ariz———————_~~——-—————-——-———-——-—————— 77 30. Jurassic unconformities in Gulf of Mexico and Pacific Coast regions———————————————————————————————— 100 31. Jurassic unconformities in western interior region —————————————————————————————————————————— 101 32. Inferred extent of Jurassic seas of early Bajocian to earliest Callovian Age in western interior region———————————— 110 33. Inferred extent of Jurassic seas of late early Callovian to early Kimmeridgian Age in western interior region——————— H2 TABLE TABLE 1. Thickness of the Piper and underlying Gypsum Spring Formations in parts of north-central Wyoming and south- CONTENTS CONVERSION FACTORS Metric unit Inch-Pound equivalent Metric unit Inch-Pound equivalent Length Specific combinations— Continued millimeter (mm) = 0.03937 inch (in) liter per second (L/s) = .0353 cubic foot per second meter (m) = 3.28 feet (ft) cubic meter per second = 91.47 cubic feet per second per kilometer (km) = .62 mile (mi) per square kilometer square mile [(ft?/s)/mi2] [(m*/s)/km8] meter per day (m/d) = 3.28 feet per day (hydraulic Area conductivity) (ft/d) square meter (m2) = 10.76 square feet (ft2) meter per kilometer = 5.28 feet per mile (ft/mi) square kilometer (km2) = .386 square mile (mi2) i<m/km) hectare (ha) — 2.47 acres kilometer per hour — .9113 foot per second <ft/s) (km/h) Volume meter per second (m/s) — 3.28 feet per second cubic centimeter (cm*) = 0.061 cubic inch (in«) meter squared per day = 10.764 feet squared per day (fta/d) liter (L) = 611.03 cubic inches (mVd) ( transmissivity ) cubic meter (m3) = 35.31 cubic feet (ftf) cubic meter per second = 22.826 million gallons per day cubic meter = .00081 acre-foot (acre-ft) (mf»/s) (Mgal/d) cubic hectometer (hm3) = 810.7 acre-feet liter = 2.113 pints (pt) cubic meter per minute = 264.2 gallons per minute (gal/min) liter = 1.06 quarts (qt) (m3/min) liter = .26 gallon (gal) liter per second (L/s) = 15.85 gallons per minute cubic meter = .00026 million gallons (Mgal or liter per second per = 4.83 gallons per minute per foot 10" gal) meter [CL/s)/m] [(gal/min)/£t] cubic meter = 6.290 barrels (bbl) (1 bbl = 42 gal) kilometer per hour — .62 mile per hour (mi/h) Weight (km/h) meter per second (m/s) — 2.237 miles per hour gram (g) = 0.035 ounce, avoirdupois (oz avdp) gram per cubic = 612.43 pounds per cubic foot (A/ft") gram = .0022 pound, avoirdupois (Ib avdp) centimeter (g/cm3) metric tons (t) = 1.102 tons, short (2,000 Ib) gram per square = 2>048 pounds per square foot (lb/ft2) metric tons = 0.9842 ton, long (2,240 Ib) centimeter (g/cm2) gram per square = .0142 pound per square inch Ob/In2) Specific combinations centimeter kilogram per square = 0.96 atmosphere (atm) centimeter (kg/cm2) Temperature kilogram per square — .98 bar (0.9.869 atm) centimeter degree Celsius (°C) = 1.8 degrees Fahrenheit (°F) cubic meter per second
Recommended publications
  • Представители Семейства Bochianitidae (Ammonoidea) Из Нижнего Мела Горного Крыма © 2008 Г
    ПАЛЕОНТОЛОГИЧЕСКИЙ ЖУРНАЛ, 2008, № 5, с. 18-26 УДК 564.5:551.76(477.9) ПРЕДСТАВИТЕЛИ СЕМЕЙСТВА BOCHIANITIDAE (AMMONOIDEA) ИЗ НИЖНЕГО МЕЛА ГОРНОГО КРЫМА © 2008 г. В. В. Аркадьев Санкт-Петербургский государственный университет e-mail: [email protected] Поступила в редакцию 10.04.2007 г. Принята к печати 21.06.2007 г. Приведены результаты ревизии гетероморфньгх аммонитов семейства Bochianitidae из нижнего ме­ ла Горного Крыма. Автором подтверждена валидность рода Janenschites, выделенного из рода Bo- chianites. Из берриаса Горного Крыма описаны виды Bochianites neocomiensis (d'Orbigny), В. goubech- ensis Mandov, В. levis sp. nov. и В. crymensis sp. nov., из нижнего баррема - виды Janenschites oosteri (Sarasin et Schondelmayer) и J. incisus sp. nov. Бохианиты, появившись в начале берриаса в южных обла­ стях (Африка, Крым), в валанжине и готериве распространились в северные районы Западной Европы. Гетероморфные аммониты рода Bochianites тарктиды (Kelly, 1995; Lomas, 1999) и Новой Гви¬ редко встречаются в нижнемеловых отложениях неи (Benson, 1923). Горного Крыма. До настоящего времени из этого В последнее время вид В. cf. neocomiensis най­ региона было описано лишь два вида - Bochianites ден в пограничных отложениях валанжина - готе- oosteri и В. neocomiensis (Каракаш, 1907). Между рива Большого Кавказа (Захаров и др., 2006). тем, представители этого рода занимают значи¬ Крымские бохианиты после Н.И. Каракаша тельное место в нижнемеловых (в частности (1907) никем не изучались. Этот исследователь верхневаланжинских) аммонитовых комплексах виды B. neocomiensis и В. oosteri определил и опи¬ западной части Тетической области (Сесса, 1998; сал из красных известняков разреза на р. Кача в Lukeneder, 2005). Географическое распростране¬ Горном Крыму. Е.Ю. Барабошкин (1997) данный ние рода Bochianites чрезвычайно широкое.
    [Show full text]
  • New and Poorly Known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France)
    Volumina Jurassica, 2014, Xii (1): 113–128 New and poorly known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France) Luc G. BULOT1, Camille FRAU2, William A.P. WIMBLEDON3 Key words: Ammonoidea, Ataxioceratidae, Himalayitidae, Neocomitidae, Upper Tithonian, Le Chouet, South-East France. Abstract. The aim of this paper is to document the ammonite fauna of the upper part of the Late Tithonian collected at the key section of Le Chouet (Drôme, SE France). Emphasis is laid on new and poorly known Ataxioceratidae, Himalayitidae and Neocomitidae from the upper part of the Tithonian. Among the Ataxioceratidae, a new account on the taxonomy and relationship between Paraulacosphinctes Schindewolf and Moravisphinctes Tavera is presented. Regarding the Himalayitidae, the range and content of Micracanthoceras Spath is discussed and two new genera are introduced: Ardesciella gen. nov., for a group of Mediterranean ammonites that is homoeomorphic with the Andean genus Corongoceras Spath, and Pratumidiscus gen. nov. for a specimen that shows morphological similarities with the Boreal genera Riasanites Spath and Riasanella Mitta. Finally, the occurrence of Neocomitidae in the uppermost Tithonian is documented by the presence of the reputedly Berriasian genera Busnardoiceras Tavera and Pseudargentiniceras Spath. INTRODUCTION known Perisphinctoidea from the Upper Tithonian of this reference section. Additional data on the Himalayitidae in- The unique character of the ammonite fauna of Le Chouet cluding the description and discussion of Boughdiriella (near Les Près, Drôme, France) (Fig. 1) has already been chouetensis gen. nov. sp. nov. are to be published elsewhere outlined by Le Hégarat (1973), but, so far, only a handful of (Frau et al., 2014).
    [Show full text]
  • (Oxfordian) Bentonite Deposits in the Paris Basin and the Subalpine Basin, France
    Sedimentology (2003) 50, 1035–1060 doi: 10.1046/j.1365-3091.2003.00592.x Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France PIERRE PELLENARD*, JEAN-FRANCOIS DECONINCK*, WARREN D. HUFF , JACQUES THIERRYà, DIDIER MARCHANDà, DOMINIQUE FORTWENGLER§ and ALAIN TROUILLER– *Morphodynamique continentale et coˆtie`re, UMR 6143 CNRS, University of Rouen, Department of Earth Sciences, 76821 Mont St Aignan Cedex, France (E-mail: [email protected]) University of Cincinnati, Department of Geology, PO Box 210013, Cincinnati, OH 45221-00, USA àBioge´osciences-Dijon, UMR 5561CNRS, Department of Earth Sciences, University of Burgundy, 6 bd Gabriel, 21000 Dijon, France §Le Clos des Vignes, Quartier Perry, 26160 La Be´gude de Mazenc, France –ANDRA, Parc de la Croix Blanche, 1–7 rue Jean Monnet, 92298 Chaˆtenay-Malabry, France ABSTRACT Explosive volcanic activity is recorded in the Upper Jurassic of the Paris Basin and the Subalpine Basin of France by the identification of five bentonite horizons. These layers occur in Lower Oxfordian (cordatum ammonite zone) to Middle Oxfordian (plicatilis zone) clays and silty clays deposited in outer platform environments. In the Paris Basin, a thick bentonite (10–15 cm), identified in boreholes and in outcrop, is dominated by dioctahedral smectite (95%) with trace amounts of kaolinite, illite and chlorite. In contrast, five bentonites identified in the Subalpine Basin, where burial diagenesis and fluid circulation were more important, are composed of a mixture of kaolinite and regular or random illite/smectite mixed-layer clays in variable proportions, indicating a K-bentonite. In the Subalpine Basin, a 2–15 cm thick bentonite underlain by a layer affected by sulphate–carbonate mineralization can be correlated over 2000 km2.
    [Show full text]
  • Upper Jurassicelower Cretaceous Stratigraphy in South-Eastern Tibet: a Comparison with the Western Himalayas
    Author's personal copy Cretaceous Research 29 (2008) 301e315 www.elsevier.com/locate/CretRes Upper JurassiceLower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas Xiumian Hu a,*, Luba Jansa b, Chengshan Wang c a State Key Laboratory of Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China b Department of Earth Sciences, Dalhousie University, Halifax B3H 3J5, Canada c Geological Centre for Tibetan Plateau, China University of Geosciences, Beijing 100083, P.R. China Received 24 January 2007; accepted in revised form 14 May 2007 Available online 28 November 2007 Abstract Lithostratigraphic studies of the Upper JurassiceLower Cretaceous sedimentary successions exposed in the TingrieGyangze area, south- eastern Tibet resulted in the establishment of a revised stratigraphic framework. A major crustal fault separates the southern Tibetan sedimentary successions into a Southern Zone and a Northern Zone. The Upper JurassiceLower Cretaceous strata of the Southern Zone are subdivided into the Menkadun Formation (Oxfordian, Kimmeridgian, up to lower Upper Tithonian), the Gucuo Formation (Upper Tithonian to Lower Albian) and the overlying Dongshan Formation (Upper Albian). The Gucuo Formation is further subdivided into a quartz arenite unit, which is overlain by a shale unit, in turn overlain by a volcaniclastic sandstone unit. The youngest cluster of detrital zircon absolute age data (127.7 Æ 1.8 Ma) from the lower part of the volcaniclastic unit of the Gucuo Formation place the volcanic event before the Late Barremian. In the Northern Zone, the Upper JurassiceLower Cretaceous strata have been subdivided into four formations: the Zhera Formation (Upper Jurassic), the Weimei Formation (Tithonian), the Rilang Formation (?Berriasian) and the Gyabula Formation (? post-Valanginian).
    [Show full text]
  • New Data on the Jaw Apparatus of Fossil Cephalopods
    New dataon the jaw apparatus of fossil cephalopods YURI D. ZAKHAROV AND TAMAZ A. LOMINADZE \ Zakharov, Yuri D. & Lominadze, Tamaz A. 19830115: New data on the jaw apparatus of fossil LETHAIA cephalopods. Lethaia, Vol. 16, pp. 67-78. Oslo. ISSN 0024-1164. A newly discovered fossil cephalopod jaw apparatus that may belong to Permian representatives of the Endocochlia is described. Permorhynchus dentatus n. gen. n. sp. is established on the basis of this ~ apparatus. The asymmetry of jaws in the Ectocochlia may be connected with the double function of the ventral jaw apparatus, and the well-developed, relatively large frontal plate of the ventral jaw should be regarded as a feature common to all representatives of ectocochlian cephalopods evolved from early Palaeozoic stock. Distinct features seen in the jaw apparatus of Upper Pcrmian cndocochlians include the pronounced beak form of both jaws and the presence of oblong wings on the ventral mandible. o Cephalopoda. jaw. operculum. aptychus, anaptychus, Permorhynchus n.gen.• evolution. Permian. Yuri D. Zakharov llOpllll Ilscumpueeu« Gaxapoe], Institute of Biology and Pedology, Far-Eastern Scientific Centre. USSR Academy of Science, Vladivostok 690022, USSR (EUOJl020-n9~BnlHbliiuucmu­ my m Ilaot.neeocmo-cnoro Ha."~H020 uenmpav Axaoeuuu 'HayK CCCP, Bnaoueocmo« 690022, CCCP); Tamaz A. Lominadze ITa.'W3 Apl.j1L10BUl.j Jlouunaoee), Institute of Palaeobiology of Georgian SSR Academy of Science. Tbilisi 380004. USSR (Hncmumvm naJle06UOJl02UU Atcaoeuuu naytc TpY3UHUjKOii CCP. T6'LJUCU 380004. CCP; 19th August. 1980 (revised 1982 06 28). The jaw apparatus of Recent cephalopods is re­ Turek 1978, Fig. 7, but not the reconstruction in presented by two jaw elements (Fig.
    [Show full text]
  • Expanded Jurassic Timescale
    TimeScale Creator 2012 chart Russian and Ural regional units Russia Platform regional units Calca Jur-Cret boundary regional Russia Platform East Asian regional units reous stages - British and Boreal Stages (Jur- Australia and New Zealand regional units Marine Macrofossils Nann Standard Chronostratigraphy British regional Boreal regional Cret, Perm- Japan New Zealand Chronostratigraphy Geomagnetic (Mesozoic-Paleozoic) ofossil stages stages Carb & South China (Neogene & Polarity Tethyan Ammonoids s Ma Period Epoch Age/Stage Substage Cambrian) stages Cret) NZ Series NZ Stages Global Reconstructions (R. Blakey) Ryazanian Ryazanian Ryazanian [ no stages M17 CC2 Cretaceous Early Berriasian E Kochian Taitai Um designated ] M18 CC1 145 Berriasella jacobi M19 NJT1 Late M20 7b 146 Lt Portlandian M21 Durangites NJT1 M22 7a 147 Oteke Puaroan Op M22A Micracanthoceras microcanthum NJT1 Penglaizhenian M23 6b 148 Micracanthoceras ponti / Volgian Volgian Middle M24 Burckhardticeras peroni NJT1 Tithonian M24A 6a 149 M24B Semiformiceras fallauxi NJT15 M25 b E 150 M25A Semiformiceras semiforme NJT1 5a Early M26 Semiformiceras darwini 151 lt-Oxf N M-Sequence Hybonoticeras hybonotum 152 Ohauan Ko lt-Oxf R Kimmeridgian Hybonoticeras beckeri 153 m- Lt Late Oxf N Aulacostephanus eudoxus 154 m- NJT14 Late Aspidoceras acanthicum Oxf R Kimmeridgian Kimmeridgian Kimmeridgian Crussoliceras divisum 155 155.431 Card- N Ataxioceras hypselocyclum 156 E Early e-Oxf Sutneria platynota R Idoceras planula Suiningian 157 Cal- Oxf N Epipeltoceras bimammatum 158 lt- Lt Callo
    [Show full text]
  • A Review of the Classification of Jurassic Aspidoceratid Ammonites – the Superfamily Aspidoceratoidea
    VOLUMINA JURASSICA, 2020, XVIII (1): 47–52 DOI: 10.7306/VJ.18.4 A review of the classification of Jurassic aspidoceratid ammonites – the Superfamily Aspidoceratoidea Horacio PARENT1, Günter SCHWEIGERT2, Armin SCHERZINGER3 Key words: Superfamily Aspidoceratoidea, Aspidoceratidae, Epipeltoceratinae emended, Peltoceratidae, Gregoryceratinae nov. subfam. Abstract. The aspidoceratid ammonites have been traditionally included in the superfamily Perisphinctoidea. However, the basis of this is unclear for they bear unique combinations of characters unknown in typical perisphinctoids: (1) the distinct laevaptychus, (2) stout shells with high growth rate of the whorl section area, (3) prominent ornamentation with tubercles, spines and strong growth lines running in parallel over strong ribs, (4) lack of constrictions, (5) short to very short bodychamber, and (6) sexual dimorphism characterized by minia- turized microconchs and small-sized macroconchs besides the larger ones, including changes of sex during ontogeny in many cases. Considering the uniqueness of these characters we propose herein to raise the family Aspidoceratidae to the rank of a superfamily Aspi- doceratoidea, ranging from the earliest Late Callovian to the Early Berriasian Jacobi Zone. The new superfamily includes two families, Aspidoceratidae (Aspidoceratinae, Euaspidoceratinae, Epipeltoceratinae and Hybonoticeratinae), and Peltoceratidae (Peltoceratinae and Gregoryceratinae nov. subfam.). The highly differentiated features of the aspidoceratoids indicate that their life-histories
    [Show full text]
  • Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba, in C
    Pszczo´łkowski, A., and R. Myczyn´ ski, 2003, Stratigraphic constraints on the Late Jurassic–Cretaceous paleotectonic interpretations of the Placetas belt in Cuba, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin 25 formation, and plate tectonics: AAPG Memoir 79, p. 545–581. Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba Andrzej Pszczo´łkowski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland Ryszard Myczyn´ski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland ABSTRACT he Placetas belt in north-central Cuba consists of Late Jurassic–Cretaceous rocks that were highly deformed during the Paleocene to middle Eocene T arc-continent collision. The Late Proterozoic marble and Middle Jurassic granite are covered by the shallow-marine arkosic clastic rocks of late Middle Jurassic(?) or earliest Late Jurassic(?) ages. These arkosic rocks may be older than the transgressive arkosic deposits of the Late Jurassic–earliest Cretaceous Con- stancia Formation. The Berriasian age of the upper part of the Constancia For- mation in some outcrops at Sierra Morena and in the Jarahueca area does not confirm the Late Jurassic (pre-Tithonian) age of all deposits of this unit in the Placetas belt. The Tithonian and Berriasian ammonite assemblages are similar in the Placetas belt of north-central Cuba and the Guaniguanico successions in western Cuba. We conclude that in all paleotectonic interpretations, the Placetas, Camajuanı´, and Guaniguanico stratigraphic successions should be considered as biogeographically and paleogeographically coupled during the Tithonian and the entire Cretaceous.
    [Show full text]
  • 301083243.Pdf
    AMEGHINIANA ISSN 0002-7014 Revista de la Asociación Paleontológica Argentina Tomo XII Diciembre de 1975 N?4 THE INDO-PACIFIC AMMONITE MAY AITES IN THE OXFORDIAN OF THESOUTHERN ANDES By P. N. STIPANICIC', G. E. G. WESTERMANN 2 and A. C. RJCCARDI3 ABSTRACT: Oxfordian Iitho- and biostratigraphy of the Chilean and Argentine Andes is reviewed (P. N. Stipanicic). Within the Chacay Group, the Lower to basal Upper Oxfordian La Manga Formation, below, mostly detrital and biogenic, and the Upper Oxfordian Au- quilco Formation, above, mainly chemical, are distinguished. The La Manga Formation (with Gryphaea calceola lumachelle) is rich in ammonite faunas, particularly of thc upper Cordatum to lower Canaliculatum Zones. In Neuquén and Mendoza provinces of Argentina, the Pli- catilis Zone or Middle Oxfordian has yielded Perísphinctes spp., Euaspidoceras spp., Aspido- ceras spp., together with Mayaítes (Araucanites ) stípanícfcí, M. (A.) reyesi, and M. (A.) mulai, Westermann et Riccardi subgen. et spp. nov. The first find of Mayaitidae outside the Indo-Pacific province is discussed in light of _plate-tectonic theory. RESUMEN: La revisron Iito- y bioestratigráfica del Oxfordiano de los Andes de Argentina y Chile (P. N. Stipanicic) ha permitido reconocer dentro del Grupo Chacay: 1) abajo, la Formación La Manga, mayormente detrítica y biogénica, del Oxfordiano inferior-superior basa!, y 2) arriba, la Formación Auquilco, mayormente química, del Oxfordiano superior. La For- mación La Manga (con lumachelas de Gryphaea calceola) contiene abundante cantidad de amonitas, particularmente de las Zonas de Cordatum superior a Canaliculatum inferior. En las provincias de Mendoza y Neuquén,Argentina, la Zona de Plicatilis (Oxfordiano medio) contiene Perispbinctes spp., Euaspidoceras spp., Aspidoceras spp., conjuntamente con Mayaites (Araucanites) stipanicici, M.
    [Show full text]
  • Jurassic-Cretaceous Tectonic and Depositional Evolution of the Forearc
    International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: https://tandfonline.com/loi/tigr20 The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula Joaquin Bastias, Mauricio Calderón, Lea Israel, Francisco Hervé, Richard Spikings, Robert Pankhurst, Paula Castillo, Mark Fanning & Raúl Ugalde To cite this article: Joaquin Bastias, Mauricio Calderón, Lea Israel, Francisco Hervé, Richard Spikings, Robert Pankhurst, Paula Castillo, Mark Fanning & Raúl Ugalde (2019): The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula, International Geology Review, DOI: 10.1080/00206814.2019.1655669 To link to this article: https://doi.org/10.1080/00206814.2019.1655669 View supplementary material Published online: 21 Aug 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://tandfonline.com/action/journalInformation?journalCode=tigr20 INTERNATIONAL GEOLOGY REVIEW https://doi.org/10.1080/00206814.2019.1655669 ARTICLE The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula Joaquin Bastias a,b, Mauricio Calderónc, Lea Israela, Francisco Hervéa,c, Richard
    [Show full text]
  • Geology of the Shepton Mallet Area (Somerset)
    Geology of the Shepton Mallet area (Somerset) Integrated Geological Surveys (South) Internal Report IR/03/94 BRITISH GEOLOGICAL SURVEY INTERNAL REPORT IR/03/00 Geology of the Shepton Mallet area (Somerset) C R Bristow and D T Donovan Contributor H C Ivimey-Cook (Jurassic biostratigraphy) The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number GD 272191/1999 Key words Somerset, Jurassic. Subject index Bibliographical reference BRISTOW, C R and DONOVAN, D T. 2003. Geology of the Shepton Mallet area (Somerset). British Geological Survey Internal Report, IR/03/00. 52pp. © NERC 2003 Keyworth, Nottingham British Geological Survey 2003 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS Keyworth, Nottingham NG12 5GG Sales Desks at Nottingham and Edinburgh; see contact details 0115-936 3241 Fax 0115-936 3488 below or shop online at www.thebgs.co.uk e-mail: [email protected] The London Information Office maintains a reference collection www.bgs.ac.uk of BGS publications including maps for consultation. Shop online at: www.thebgs.co.uk The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Murchison House, West Mains Road, Edinburgh EH9 3LA Desks. 0131-667 1000 Fax 0131-668 2683 The British Geological Survey carries out the geological survey of e-mail: [email protected] Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the London Information Office at the Natural History Museum surrounding continental shelf, as well as its basic research (Earth Galleries), Exhibition Road, South Kensington, London projects.
    [Show full text]
  • Remarks on the Tithonian–Berriasian Ammonite Biostratigraphy of West Central Argentina
    Volumina Jurassica, 2015, Xiii (2): 23–52 DOI: 10.5604/17313708 .1185692 Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina Alberto C. RICCARDI 1 Key words: Tithonian–Berriasian, ammonites, west central Argentina, calpionellids, nannofossils, radiolarians, geochronology. Abstract. Status and correlation of Andean ammonite biozones are reviewed. Available calpionellid, nannofossil, and radiolarian data, as well as radioisotopic ages, are also considered, especially when directly related to ammonite zones. There is no attempt to deal with the definition of the Jurassic–Cretaceous limit. Correlation of the V. mendozanum Zone with the Semiforme Zone is ratified, but it is open to question if its lower part should be correlated with the upper part of the Darwini Zone. The Pseudolissoceras zitteli Zone is characterized by an assemblage also recorded from Mexico, Cuba and the Betic Ranges of Spain, indicative of the Semiforme–Fallauxi standard zones. The Aulacosphinctes proximus Zone, which is correlated with the Ponti Standard Zone, appears to be closely related to the overlying Wind­ hauseniceras internispinosum Zone, although its biostratigraphic status needs to be reconsidered. On the basis of ammonites, radiolarians and calpionellids the Windhauseniceras internispinosum Assemblage Zone is approximately equivalent to the Suarites bituberculatum Zone of Mexico, the Paralytohoplites caribbeanus Zone of Cuba and the Simplisphinctes/Microcanthum Zone of the Standard Zonation. The C. alternans Zone could be correlated with the uppermost Microcanthum and “Durangites” zones, although in west central Argentina it could be mostly restricted to levels equivalent to the “Durangites Zone”. The Substeueroceras koeneni Zone ranges into the Occitanica Zone, Subalpina and Privasensis subzones, the A.
    [Show full text]