2019), DOI: 10.1111/Syen.12350

Total Page:16

File Type:pdf, Size:1020Kb

2019), DOI: 10.1111/Syen.12350 Systematic Entomology (2019), DOI: 10.1111/syen.12350 Phylogenomic analysis of seal lice reveals codivergence with their hosts MARÍA SOLEDAD LEONARDI1 ,STEPHANYVIRRUETA HERRERA2,ANDREWSWEET2,3,JAVIERNEGRETE4 and K E V I N P . J O H N S O N 2 1Laboratorio de Biología de Predadores Tope Marinos, IBIOMAR, CCT CONICET– CENPAT, Puerto Madryn, Argentina, 2Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, U.S.A., 3Department of Entomolog, Purdue University, West Lafayette, IN, U.S.A. and 4Instituto Antártico Argentino y Facultad de Ciencias Naturales y Museo de La Plata, La Plata, Argentina Abstract. Lice are considered a model system for studying the process of cospeciation because they are obligate and permanent parasites and are often highly host-specifc. Among lice, species in the family Echinophthiriidae Enderlein (Anoplura) are unique in that they infest mammalian hosts with an amphibious lifestyle, i.e. pinnipeds and the river otter. There is evidence that the ancestor of this group infested the terrestrial ancestor of pinnipeds, which suggests these parasites coevolved with their hosts during the transition to marine environments. However, there has been no previous study inves- tigating the phylogenetic relationships among sucking lice parasitizing seals and sea lions. To uncover the evolutionary history of these parasites, we obtained genomic data for Antarctophthirus microchir Trouessart and Neumann (from two hosts), Antarctoph- thirus carlinii Leonardi et al., Antarctophthirus lobodontis Enderlein, Antarctophthirus ogmorhini Enderlein, Lepidophthirus macrorhini Enderlein, and Proechinophthirus fuctus Ferris. From genomic sequence reads, we assembled > 1000 nuclear genes and used these data to infer a phylogenetic tree for these lice. We also used the assembled genes in combination with read-mapping to estimate heterozygosity and effective population size from individual lice. Our analysis supports the monophyly of lice from pinnipeds and uncovers phylogenetic relationships within the group. Surprisingly, we found that A. carlinii, A. lobodontis,andA. ogmorhini have very little genetic divergence among them, whereas the divergence between different geographic representatives of A. microchir indicate that they are possibly different species. Nevertheless, our phylogeny of Echinophthiriidae suggests that these lice have consistently codiverged with their hosts with minimal host switching. Population genomic metrics indicate that louse effective population size is linked to host demographics, which further highlights the close association between pinnipeds and their lice. Introduction technologies provide the opportunity to simultaneously obtain extremely large datasets for both phylogenomic and popula- A very large fraction of all insects are parasites. Phylogenetic tion genomic approaches (Sweet et al.,2017).Inparticular, studies of insect parasites with respect to their hosts provide because of their relatively small genomes (c. 100–200 Mbp), opportunities to understand the basis of insect diversifcation parasitic lice (Insecta: Phthiraptera) provide an excellent system and specialization. In addition, next-generation sequencing (Clayton et al., 2016) in which to use these large datasets to study both the pattern of diversifcation with respect to Correspondence: María Soledad Leonardi, Instituto de Biología de their hosts and the way in which interactions with the hosts Organismos Marinos, CCT CONICET–CENPAT, Bvd. Brown 2915, PC 9120, Puerto Madryn, Argentina. might infuence population-level processes. Here we use E-mail: [email protected] these datasets to study the process of codiversifcation and © 2019 The Royal Entomological Society 1 2 M. S. Leonardi et al. Table 1. Seal–louse associations of the family Echinophthiriidae 2012). Australian sea lions (Neophoca cinerea Péron) are par- (Anoplura). ticularly at risk, and have been listed as endangered on the IUCN Red List since 2008 (Goldsworthy, 2015). Although some Genus Species Host life-history traits of certain pinniped species, such as small Antarctophthirus callorhini Northern fur seal breeding colonies, may contribute to their low numbers, human carliniia Weddell seala actions have also contributed to their decline (Hamer et al., lobodontisa Crabeater seala 2013). Compared with other aspects of their biology, the phy- mawsoni Ross seal logeny of pinnipeds is relatively well studied and provides an a microchir Steller, Californian, South evolutionary framework in which to understand the evolution Americana,Australiana and New Zealand sea lion of their parasitic lice. Molecular analysis supports the mono- ogmorhinia Leopard seala phyletic origin of the Pinnipedia with a basal split between trichechi Walruses Otarioidea (fur seals and walruses) and Phocoidea (true seals) Latagophthirus rauschi Northern river otter (Arnason et al.,2006).CurrentevidencesuggestsaNorthAmer- Lepidophthirus macrorhinia Elephant sealsa ican origin for pinnipeds. This was followed by an Atlantic dis- piriformis Monk seals persal for phocids and a Pacifc dispersal for otariids into the Echinophthirius horridus Northern true seals southern hemisphere. Coinciding with this scenario, Kim (1985) Proechinophthirus fuctusa a Northern fur seal suggested that pinniped lice have coevolved with the ancestral zumpti Southern fur seals Otarioidea and Phocidae, being present in the terrestrial ancestor aLouse and seal species sampled in this study. of pinnipeds. Therefore, the origin and diversifcation of these lice are likely to be intimately associated with host evolutionary history. However, there have been no prior studies of the phy- effective population size in the sucking lice (Anoplura) of seals logeny of pinniped lice. (Pinnipedia). The primary goal of this study is to analyse the evolutionary Sucking lice are obligate, permanent and haematophagous history of sucking lice parasitizing seals and sea lions, prin- insects, living as ectoparasites in the fur or hairs of their cipally in Patagonia and Antarctica, applying next-generation mammalian hosts. Sucking lice in the family Echinophthiriidae sequencing approaches. We explore the utility of genome Enderlein are unique in that they infest amphibious hosts, such sequencing to resolve the phylogeny of seal lice and to estimate as pinnipeds (walruses, seals and sea lions) and river otters (Dur- demographic parameters of lice from the same genomic data. den & Musser, 1994; Leonardi & Palma, 2013). Other aquatic Finally, we compare the phylogeny of these lice with that of their (e.g. whales, dolphins, manatees) or amphibious (e.g. platy- hosts in a cophylogenetic framework. pus, hippos) mammals do not host lice. The family Echinoph- thiriidae comprises fve genera and 13 species. Genera include Latagophthirus Kim and Emerson (one species) from the North Methods river otter, Proechinophthirus Ewing (two species) from fur seals, Echinophthirius Giebel (one species) from seals in the Genome sequencing northern hemisphere, Lepidophthirus Enderlein (two species) from monk and elephant seals, and Antarctophthirus Enderlein Louse samples were collected with combs or tweezers in the (seven species) from a variety of pinnipeds (Table 1). Antarc- feld from their hosts’ hind fippers and preserved in 96% ethanol tophthirus is the most diverse genus, and most species are highly (see details in Leonardi, 2014). When anaesthetization of seals host-specifc(Durden&Musser,1994).SpeciesofAntarctoph- was needed, the animals were immobilized following routine thirus are associated with a diversity of pinnipeds, including procedures (see details in Wheatley et al.,2006)bypeoplefrom walruses (Odobenidae Allen), Antarctic seals (Phocidae Gray) the Argentinean Antarctic Institute. Collecting lice from the and sea lions (Otariidae Gray). Just as their hosts, these lice prob- fippers provides a reliable proxy for total louse load, and also ably have a terrestrial origin (Kim, 1985). Therefore, these lice reduces host handling time (Leonardi et al.,2018).Antarcticlice evolved many unique morphological, physiological, behavioural were collected in the northern sector of the Danco Coast and 25 and ecological adaptations to cope with the amphibious lifestyle de Mayo Island; lice from Australian sea lions and the northern of their hosts. Some of these adaptations include increased den- fur seal were sampled by Rebecca McIntosh, Phillip Island sity of setae and reduced development time (Kim, 1971; Murray, Nature Parks, Australia, and Christine Fontaine, The Marine 1976; Mehlhorn et al.,2002;Leonardiet al.,2012;Leonardi Mammal Center, U.S.A.; fnally, lice from South American & Lazzari, 2014). These specialized traits, together with host sea lions were obtained from the Parasitological Collection specifcity of these lice, suggest that they coevolved with their at Centro Nacional Patagónico, Puerto Madryn. Before DNA hosts during the colonization of the marine environment (Kim, extraction, each specimen was photographed at the University 1975, 1985; Kim et al., 1975). of Illinois, Urbana-Champaign, as a voucher. Whole lice were Marine mammals such as pinnipeds are more poorly stud- ground up individually (Table S1) in 1.5 mL tubes and genomic ied and generally more threatened compared with terrestrial DNA was isolated using standard protocols and reagents of mammals. One in three species of pinnipeds is threatened com- the Qiagen QIAamp DNA Micro Kit (Qiagen, Valencia, CA, pared with one in fve mammals more generally
Recommended publications
  • Dental Anomalies in the Atlantic Population of South American Sea Lion, Otaria Byronia (Pinnipedia, Otariidae): Evolutionary Implications and Ecological Approach
    e-ISSN 2236-1057 - doi:10.5597/lajam00044 http://dx.doi.org/10.5597/lajam00044 LAJAM 3(1): 7-18, January/June 2004 ISSN 1676-7497 DENTAL ANOMALIES IN THE ATLANTIC POPULATION OF SOUTH AMERICAN SEA LION, OTARIA BYRONIA (PINNIPEDIA, OTARIIDAE): EVOLUTIONARY IMPLICATIONS AND ECOLOGICAL APPROACH César Jaeger Drehmer 1, 2 , Marta Elena Fabián 2, 3 and João Oldair Menegheti 3 Abstract – We analyzed 63 cases of dental anomalies from 62 specimens of a total sample of 516 specimens of the Atlantic population of South American sea lions, Otaria byronia de Blainville, 1820. The anomalies were represented by 53 cases of missing upper post-canine 6 (second molars), seven cases of maxillary or mandibular extra teeth, two cases of “dentes geminati” and one case of reduced teeth. Considering a phylogenetic framework where all otariid species and basal Pinnipedimorpha are included, missing post-canine 6 could be related to evolutionary trends in Otariidae towards a progressive reduction and loss of teeth (agenesis). The occurrence of the upper post-canine 6 in Otaria Péron, 1816 as in Phocarctos Peters, 1866 is usually regarded as a primitive character. Alternatively, when adopting another cladistic procedure, this could be interpreted as a taxic atavism at the base of Otaria/Phocarctos clade. Extra-mandibular teeth are related to a concrete case of spontaneous atavism in the dentition of Otaria byronia, in retrogression to ancient groups like the Miocene pinnipediform Pteronarctos Barnes, 1989. The other anomalies – maxillary extra teeth, “dentes geminati” and reduced teeth - are caused by some disturbance on the epigenetic system underlying dental morphogenesis leading to duplication, coalescence or duplication and reduction of the dental germ, respectively.
    [Show full text]
  • The Antarctic Ross Seal, and Convergences with Other Mammals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual Evolutionary biology Sensory anatomy of the most aquatic of rsbl.royalsocietypublishing.org carnivorans: the Antarctic Ross seal, and convergences with other mammals Research Cleopatra Mara Loza1, Ashley E. Latimer2,†, Marcelo R. Sa´nchez-Villagra2 and Alfredo A. Carlini1 Cite this article: Loza CM, Latimer AE, 1 Sa´nchez-Villagra MR, Carlini AA. 2017 Sensory Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. CONICET, La Plata, Argentina anatomy of the most aquatic of carnivorans: 2Pala¨ontologisches Institut und Museum der Universita¨tZu¨rich, Karl-Schmid Strasse 4, 8006 Zu¨rich, Switzerland the Antarctic Ross seal, and convergences with MRS-V, 0000-0001-7587-3648 other mammals. Biol. Lett. 13: 20170489. http://dx.doi.org/10.1098/rsbl.2017.0489 Transitions to and from aquatic life involve transformations in sensory sys- tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate the cranio-sensory anatomy in the most aquatic of all seals. The use of non-invasive computed tomography on specimens of this rare animal Received: 1 August 2017 reveals, relative to other species of phocids, a reduction in the diameters Accepted: 12 September 2017 of the semicircular canals and the parafloccular volume. These features are independent of size effects. These transformations parallel those recorded in cetaceans, but these do not extend to other morphological features such as the reduction in eye muscles and the length of the neck, emphasizing the independence of some traits in convergent evolution to aquatic life.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • HOME RANGES and DIVING BEHAVIOR of NEW ZEALAND SEA LIONS ALONG the CATLINS COAST, SOUTH ISLAND, NEW ZEALAND a Dissertation by NA
    HOME RANGES AND DIVING BEHAVIOR OF NEW ZEALAND SEA LIONS ALONG THE CATLINS COAST, SOUTH ISLAND, NEW ZEALAND A Dissertation by NATHAN MARK REED Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Randall Davis Committee Members, William Seitz Blair Sterba-Boatwright Bernd Würsig Intercollegiate Faculty Chair, Anja Schulze May 2021 Major Subject: Marine Biology Copyright 2021 Nathan Reed ABSTRACT New Zealand sea lions (Phocarctos hookeri) were extirpated from the North and South Islands of New Zealand during pre-European native hunting, and their numbers were greatly reduced on the Auckland and Campbell Islands during European commercial sealing. However, they began reoccupying South Island in 1994, and pup production remains low but steady. The home range, at-sea movements, and diving behavior of females at the breeding colony along the Catlins Coast of South Island have not been studied since its inception in 2006. The goal of the study was to: 1) evaluate the performance of home range models to identify the most accurate model(s) for a semi- aquatic distribution, 2) track movements to identify home ranges, and 3) record diving behavior of females to characterize foraging behavior and estimate energy expenditure. To accomplish this study, we attached satellite telemeters and video and data recorders to females along the Catlins Coast during austral winter of 2019. Home ranges were most accurately modeled by separating inshore and offshore habitats and applying adaptive local convex hulls (LOCOH) and fixed kernel density with plug-in bandwidth selection (PKDE), respectively.
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, Morphology and the Great American Interchange
    Molecular Phylogenetics and Evolution 43 (2007) 1076–1095 www.elsevier.com/locate/ympev Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange a, b c a Klaus-Peter KoepXi ¤, Matthew E. Gompper , Eduardo Eizirik , Cheuk-Chung Ho , Leif Linden a, Jesus E. Maldonado d, Robert K. Wayne a a Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA b Department of Fisheries and Wildlife Sciences, University of Missouri, Colombia, MO 65211, USA c Faculdade de Biociencias, PUCRS, Av. Ipiranga, 6681, Predio 12, Porto Alegre, RS 90619-900, Brazil d Smithsonian Institution, NMNH/NZP—Genetic Program, 3001 Connecticut Avenue NW, Washington, DC 20008, USA Received 10 June 2006; revised 22 September 2006; accepted 2 October 2006 Available online 11 October 2006 Abstract The Procyonidae (Mammalia: Carnivora) have played a central role in resolving the controversial systematics of the giant and red pandas, but phylogenetic relationships of species within the family itself have received much less attention. Cladistic analyses of morpho- logical characters conducted during the last two decades have resulted in topologies that group ecologically and morphologically similar taxa together. SpeciWcally, the highly arboreal and frugivorous kinkajou (Potos Xavus) and olingos (Bassaricyon) deWne one clade, whereas the more terrestrial and omnivorous coatis (Nasua), raccoons (Procyon), and ringtails (Bassariscus) deWne another clade, with the similar-sized Nasua and Procyon joined as sister taxa in this latter group. These relationships, however, have not been tested with molecu- lar sequence data. We examined procyonid phylogenetics based on combined data from nine nuclear and two mitochondrial gene seg- ments totaling 6534 bp.
    [Show full text]
  • Multiple Fossil Calibrations, Nuclear Loci and Mitochondrial Genomes
    Journal of Biogeography (J. Biogeogr.) (2010) 37, 814–829 ORIGINAL Multiple fossil calibrations, nuclear loci ARTICLE and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia) Tara L. Fulton* and Curtis Strobeck CW405 Biological Sciences Building, University ABSTRACT of Alberta, AB, T6G 2E9, Canada Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near-complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft-bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non-phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought.
    [Show full text]
  • Re-Evaluation of Morphological Characters Questions Current Views of Pinniped Origins
    Vestnik zoologii, 50(4): 327–354, 2016 Evolution and Phylogeny DOI 10.1515/vzoo-2016-0040 UDC 569.5:575.86 RE-EVALUATION OF MORPHOLOGICAL CHARACTERS QUESTIONS CURRENT VIEWS OF PINNIPED ORIGINS I. A. Koretsky¹, L. G. Barnes², S. J. Rahmat¹ ¹Laboratory of Evolutionary Biology, Department of Anatomy, College of Medicine, Howard University, 520 W. St. NW, Washington, DC 20059 E-mail: [email protected] ²Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 Re-evaluation of Morphological Characters Questions Current Views of Pinniped Origins. Koretsky, I. A., Barnes, L. G., Rahmat, S. J. — Th e origin of pinnipeds has been a contentious issue, with opposite sides debating monophyly or diphyly. Th is review uses evidence from the fossil record, combined with comparative morphology, molecular and cytogenetic investigations to evaluate the evolutionary history and phylogenetic relationships of living and fossil otarioid and phocoid pinnipeds. Molecular investigations support a monophyletic origin of pinnipeds, but disregard vital morphological data. Likewise, morphological studies support diphyly, but overlook molecular analyses. Th is review will demonstrate that a monophyletic origin of pinnipeds should not be completely accepted, as is the current ideology, and a diphyletic origin remains viable due to morphological and paleobiological analyses. Critical examination of certain characters, used by supporters of pinniped monophyly, reveals diff erent polarities, variability, or simply convergence. Th e paleontological record and our morphological analysis of important characters supports a diphyletic origin of pinnipeds, with otarioids likely arising in the North Pacifi c from large, bear-like animals and phocids arising in the North Atlantic from smaller, otter-like ancestors.
    [Show full text]
  • An Arctomorph Carnivoran Skull from the Phosphorites Du Quercy and the Origin of Procyonids
    An arctomorph carnivoran skull from the Phosphorites du Quercy and the origin of procyonids MIECZYSEAW WOLSAN and BRIGI'ITE LANGE-BAD& Wolsan, M. & Lange-BadrC, B. 1996. An arctomorph carnivoran skull from the Phosphorites du Quercy and the origin of procyonids. Acta Palaeontologica Poloni- ca 41, 3, 277-298. The size and morphological characteristics of a skull of an arctomorph carnivoran mammal from Mouillac (old collection of the Phosphorites du Quercy, of unknown age) in France closely match those of the holotype of the earliest known procyonid Pseudobassaris riggsi and another skull referred to this species, both from old collections of the Phosphorites du Quercy (Caylus and Mouillac), probably earliest Late Oligocene in age. The skull is more primitive in morphology than those of ~seudobassarisrig&i and every other known procyonid, approaching a hypothetical primitive procyonid morphotype. The only, but methodologically fundamental, departure from this morphotype is the lack of the procyonid supra- meatal fossa, which is the crucial synapomorphy of the family Procyonidae. To explain the phylogenetic and taxonomic status of the arctomorph represented by the skull, three competing hypotheses are put forward. Hypothesis A, which considers the arctomorph as an individual of Pseudobassaris riggsi, assumes that the procyonid suprameatal fossa first appeared in a common ancestor of Pseudo- bassaris and other procyonids but was still of variable occurence within Pseudo- bassaris riggsi. Hypothesis B, which proposes the arctomorph as a member of a new Pseudobassaris species ancestral to Pseudobassaris riggsi, concludes that the procyonid suprameatal fossa arose in Pseudobassaris riggsi and in the Procyonidae independently, excluding Pseudobassaris from the procyonids.
    [Show full text]
  • Phylogeny, Historical Biogeography, and Ecology of Anophryocephalus Spp
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 1992 Phylogeny, Historical Biogeography, and Ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among Pinnipeds of the Holarctic during the Late Tertiary and Pleistocene Eric P. Hoberg United States Department of Agriculture, Agricultural Research Service, [email protected] Ann M. Adams United States Food and Drug Administration, Seafood Products Research Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Parasitology Commons, and the Zoology Commons Hoberg, Eric P. and Adams, Ann M., "Phylogeny, Historical Biogeography, and Ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among Pinnipeds of the Holarctic during the Late Tertiary and Pleistocene" (1992). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 781. http://digitalcommons.unl.edu/parasitologyfacpubs/781 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. This article is a U.S. government work, and is not subject to copyright in the United States. Phylogeny, historical biogeography, and ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among pinnipeds of the Holarctic during the late Tertiary and Pleistocene E. P. HOBERG United States Department of Agriculture, Agricultural Research Service, Biosystematic Parasitology Laboratory, Beltsville Agricultural Research Center East, Building 1180, 10300 Baltimore Avenue, Beltsville, Md.
    [Show full text]
  • Taxonomic Implications of Morphometric Analysis of Earless Seal Limb Bones
    Editors' choice Taxonomic implications of morphometric analysis of earless seal limb bones MORGAN CHURCHILL and MARK D. UHEN Churchill, M. and Uhen, M.D. 2019. Taxonomic implications of morphometric analysis of earless seal limb bones. Acta Palaeontologica Polonica 64 (2): 213–230. Fossil Phocidae (earless seals) are mostly known from isolated postcranial material, forcing researchers to rely upon humeri and femora for the diagnosis of taxa and reconstruction of phylogeny. However, the utility of these elements has never been rigorously tested. Here, we provide the first quantitative analysis of morphometric data from the humerus and femur, incorporating measurement data from all extant genera as well as several fossil taxa. Principle components analysis (PCA) found that genera clustered together on PC1 and PC2, although there was poor segregation of taxa and extensive overlap with genera in adjacent regions of the morphospace. Discriminant function analysis (DFA) was able to sort fossil taxa into different subfamilies, but performed poorly at lower taxonomic levels. A preliminary review of phylogenetic characters found that while some characters performed well at distinguishing different subfamilies, many characters were poorly defined and not quantified, possessed greater individual variation than past studies suggested, or were more variable in fossil taxa. Our analyses suggest that the utility of isolated humeri and femora for diagnosis of new taxa has been greatly exaggerated, and that extreme caution should be applied to interpretations of taxonomy of fossil material based on isolated elements. Future research should instead focus on study of associated skeletons and cranial material. A thorough revision of fossil phocid taxonomy is needed, and many described taxa are likely to be nomina dubia and of limited use in phylogenetic analysis.
    [Show full text]
  • Supporting Information
    Supporting Information Finarelli and Flynn 10.1073/pnas.0901780106 SI Text comparisons to extant taxa appreciably lower the power of Phylogeny of the Carnivora. Valid statistical analysis of compara- statistical analyses. tive data in biological systems always requires information on the The still imprecise understanding of the evolutionary rela- phylogenetic relationships of the organisms being analyzed to tionships among fossil and extant musteloid taxa (7–11) presents account for the statistical nonindependence of observed char- further challenges in reconstructing character transformations acter values for closely related taxa (1, 2). We constructed a across this clade. We partitioned both nonfelid feliforms and composite cladogram of the Carnivora based on frameworks musteloids into ‘‘archaic’’ and ‘‘modern’’ groups based on first provided by several recent molecular phylogenies of the Car- appearances of taxa in the fossil record. It should be noted that nivora and further augmented by clade-specific phylogenies both of these cutoffs are necessarily arbitrary, and the groupings derived from DNA and morphological data. Recent phyloge- they produce are both highly paraphyletic. Therefore, in contrast netic analyses of the Carnivora using DNA sequence data have to the preceding use of paraphyletic groups, for which observed greatly improved our understanding of the interrelationships change in the allometries can be mapped to a single branch of the among the traditional family-level clades within this clade. In phylogeny, changes between archaic and modern feliforms or addition, morphological and ‘‘total evidence’’ phylogenies, in- musteloids only represent differences between early and late cluding fossil taxa, provide the means to incorporate extinct appearing members of each group.
    [Show full text]