Improvement of Pharmacokinetics of Small Recombinant Bispecific Antibodies

Total Page:16

File Type:pdf, Size:1020Kb

Improvement of Pharmacokinetics of Small Recombinant Bispecific Antibodies Improvement of pharmacokinetics of small recombinant bispecific antibody molecules Von der Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Christoph Roland Stork aus Frankfurt am Main Hauptberichter: Prof. Dr. Roland E. Kontermann Mitberichter: Prof. Dr. Peter Scheurich Tag der mündlichen Prüfung: 31.08.2009 Institut für Zellbiologie und Immunologie 2009 Index Index Abbreviations ______________________________________________________________ 4 Summary__________________________________________________________________ 6 Zusammenfassung __________________________________________________________ 8 Introduction ______________________________________________________________ 10 Antibodies in cancer therapy ____________________________________________________ 10 Retargeting of effector cells by bispecific antibodies_________________________________ 12 Improvement of the circulation half-life of small recombinant antibodies _______________ 15 PEGylation ________________________________________________________________________ 17 N-glycosylation _____________________________________________________________________ 18 Exploitation of the Fc-mediated recycling by the neonatal Fc-receptor __________________________ 20 Exploitation of HSA recycling by the neonatal Fc-receptor ___________________________________ 21 Aim of this study ______________________________________________________________ 23 Manuscripts ______________________________________________________________ 27 Short summaries of the manuscripts______________________________________________ 27 Publication I _______________________________________________________________________ 27 Publication II _______________________________________________________________________ 28 Publication III ______________________________________________________________________ 29 A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G_________________________________________________________ 30 Abstract ___________________________________________________________________________ 31 Introduction ________________________________________________________________________ 31 Materials and Methods _______________________________________________________________ 33 Results ____________________________________________________________________________ 36 Discussion _________________________________________________________________________ 42 Acknowledgement___________________________________________________________________ 45 References _________________________________________________________________________ 45 N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single- chain diabodies _______________________________________________________________ 48 Abstract ___________________________________________________________________________ 48 Introduction ________________________________________________________________________ 49 I Index Materials & Methods_________________________________________________________________ 50 Results ____________________________________________________________________________ 55 Discussion _________________________________________________________________________ 62 Footnotes __________________________________________________________________________ 65 References _________________________________________________________________________ 65 Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives __ 69 Abstract ___________________________________________________________________________ 69 Introduction ________________________________________________________________________ 70 Experimental Procedure ______________________________________________________________ 71 Results ____________________________________________________________________________ 74 Discussion _________________________________________________________________________ 80 Footnotes __________________________________________________________________________ 83 References _________________________________________________________________________ 84 Discussion & Perspectives ___________________________________________________ 86 Production of the modified scDb constructs and effects of the modifications on circulation half-life ______________________________________________________________________ 86 Impact of the modifications on the bioactivity of scDbCEACD3 _______________________ 89 Effects of the modifications on tumor accumulation of scDbCEACD3 __________________ 90 Perspectives __________________________________________________________________ 92 Conclusion ___________________________________________________________________ 94 References________________________________________________________________ 95 Acknowledgment _________________________________________________________ 109 Curriculum vitae__________________________________________________________ 110 II Abbreviations Abbreviations aa Amino acid(s) ABD Albumin-binding domain ADCC Antibody dependent cellular cytotoxicity AUC Area under the curve BiTE Bispecific T-cell engager CD Cluster of differentiation CDC Complement dependent cytotoxicity CDR Complementarity determining region CEA Carcinoembryonic antigen CTLA-4 Cytotoxic T-lymphocyte antigen 4 dAbs Human domain antibodies Db Diabody EC 50 Half-maximal effective concentration ECM Extracellular matrix EGF Epidermal growth factor EGFR Epidermal growth factor receptor ELISA Enzyme-linked immunosorbent assay Ep-CAM Epithelial cell adhesion molecule EPO Erythropoietin EPR Enhanced permeability and retention effect Fab Fragment antigen-binding Fc Fragment crystallizable FcRn Neonatal Fc-receptor FcRn hc Heavy chain of the neonatal Fc-receptor FDA US Food and Drug Administration Fv Variable fragment G-CSF Granulocyte colony-stimulating factor GM-CSF Granulocyte macrophage colony-stimulating factor HAMA Human anti-mouse antibody HAP Homo-amino-acid polymer HSA Human serum albumin IC 50 Half-maximal inhibitory concentration Ig Immunoglobulin IL Interleukin KD Dissociation constant KO Knockout mAb Monoclonal antibody MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry MHC Major histocompatibility complex 4 Abbreviations MSA Mouse serum albumin MW Molecular weight NHL Non-Hodgkin Lymphoma PBMC Peripheral blood mononuclear cells PEG Polyethylene glycol PEO Polyethylene oxide PSA Polysialic acid RSA Rat serum albumin scDb Single-chain Diabody scDb-ABD scDb fused to the ABD3 of streptococcal protein G scFv Single-chain variable fragment SEC Size exclusion chromatography TAA Tumor-associated antigen taFv Tandem scFv TNF Tumor necrosis factor TNF-R Tumor necrosis factor receptor VH Heavy chain of the variable domain VHH Single V-like domain of camelid single domain antibodies VL Light chain of the variable domain V-NAR Single V-like domain of shark single domain antibodies 5 Summary Summary The progress in protein engineering of the last two decades led to the development of a variety of small recombinant antibody formats for tumor therapy. These small formats show improved properties compared to the conventional monoclonal antibodies which are commonly IgGs. Small recombinant antibodies penetrate solid tumors more homogenously, cause less side effects for lacking the Fc-region and can be produced more economically in bacteria. However, they exhibit a shorter circulation half-life than IgGs. They are rapidly cleared by renal filtration because of their small size and their lack of the Fc-region, which mediates the recycling after cellular uptake by the neonatal Fc-receptor (FcRn). The short circulation half-life of small antibody formats reduces their anti-tumor efficacy and necessitates frequent infusions, leading to high costs and patient inconvenience. The present study aims at the improvement of pharmacokinetics of a bispecific single-chain diabody (scDb) directed against the tumor-associated antigen CEA and the T-cell receptor complex molecule CD3. Therefore, it is able to retarget cytotoxic T-cells to CEA + tumor cells. Three basically different strategies are compared in this study to improve the pharmacokinetics of scDbCEACD3: N-glycosylation, PEGylation and fusion to a bacterial albumin-binding domain (ABD). N-glycosylation and PEGylation of the scDb aim at an increased hydrodynamic radius and thereby reduced renal clearance. The fusion of the scDb to ABD has an additional effect: As well as IgG, albumin is recycled by the FcRn. Bound to albumin, scDb-ABD can exploit this mechanism and be recycled after cellular uptake. For the N-glycosylation three different derivatives with 3, 6 or 9 N-glycosylation sites (sequons) were engineered, resulting in a moderate enlargement of the scDb, which translated in a moderately prolonged serum half-life. In contrast, PEGylation of the scDb with a large, branched PEG 40 kDa led to a ~ 3-fold enlargement of the hydrodynamic radius, resulting in a drastically increase of the circulation time. The longest circulation time with a ~ 14-fold increased area under the curve (AUC) was observed for scDb-ABD. By comparing its half- life in FcRn heavy chain knockout and in wild-type mice, the contribution of the FcRn- mediated recycling on the prolonged serum half-live of scDb-ABD could be confirmed. Titration of scDb and its derivatives
Recommended publications
  • Affibody Molecules for Epidermal Growth Factor Receptor Targeting
    Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate.
    [Show full text]
  • Wo2015188839a2
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • Human Antibodies That Bind CXCR4 and Uses Thereof CXCR4-Bindende Humane Antikörper Und Deren Verwendungen Anticorps Humains Liant Le CXCR4 Et Utilisations Associées
    (19) TZZ __T (11) EP 2 486 941 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 39/395 (2006.01) C07K 16/28 (2006.01) 15.03.2017 Bulletin 2017/11 (21) Application number: 12155398.6 (22) Date of filing: 01.10.2007 (54) Human antibodies that bind CXCR4 and uses thereof CXCR4-bindende humane Antikörper und deren Verwendungen Anticorps humains liant le CXCR4 et utilisations associées (84) Designated Contracting States: EP-A- 1 316 801 WO-A-2004/059285 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-2006/089141 US-A1- 2003 206 909 HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR • GHOBRIAL IRENE M ET AL: "The role of CXCR4 Designated Extension States: inhibitors as novel antiangiogenesis agents in RS cancer therapy", BLOOD, W.B.SAUNDERS COMPANY, ORLANDO, FL, vol. 104, no. 11 (30) Priority: 02.10.2006 US 827851 P PART1, 1 November 2004 (2004-11-01), pages 365A-366A, XP002458710, ISSN: 0006-4971 (43) Date of publication of application: • ENDRES M J ET AL: "CD4-INDEPENDENT 15.08.2012 Bulletin 2012/33 INFECTION BY HIV-2 IS MEDIATED BY FUSIN/CXCR4", CELL, CELL PRESS, (62) Document number(s) of the earlier application(s) in CAMBRIDGE, NA, US, vol. 87, 15 November 1996 accordance with Art. 76 EPC: (1996-11-15), pages745-756, XP002920421, ISSN: 07867192.2 / 2 066 351 0092-8674 • BARIBAUD FREDERIC ET AL: "Antigenically (73) Proprietor: E.
    [Show full text]
  • WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT (51) International Patent Classification: co, California 94124 (US). DUBRIDGE, Robert B.; 825 A61K 39/395 (2006.01) C07K 16/28 (2006.01) Holly Road, Belmont, California 94002 (US). LEMON, A61P 35/00 (2006.01) C07K 16/46 (2006.01) Bryan D.; 2493 Dell Avenue, Mountain View, California 94043 (US). AUSTIN, Richard J.; 1169 Guerrero Street, (21) International Application Number: San Francisco, California 941 10 (US). PCT/US20 17/063 126 (74) Agent: LIN, Clark Y.; WILSON SONSINI GOODRICH (22) International Filing Date: & ROSATI, 650 Page Mill Road, Palo Alto, California 22 November 201 7 (22. 11.201 7) 94304 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Langi English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/426,069 23 November 2016 (23. 11.2016) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/426,077 23 November 2016 (23. 11.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: HARPOON THERAPEUTICS, INC. KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, [US/US]; 4000 Shoreline Court, Suite 250, South San Fran MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, cisco, California 94080 (US).
    [Show full text]
  • Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy
    Published OnlineFirst June 9, 2021; DOI: 10.1158/1078-0432.CCR-20-3770 CLINICAL CANCER RESEARCH | REVIEW Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy A C Belen Blanco1,2, Carmen Domínguez-Alonso1,2, and Luis Alvarez-Vallina1,2 ABSTRACT ◥ The recent advances in the field of immuno-oncology have here referred to as bispecific immunomodulatory antibodies, dramatically changed the therapeutic strategy against advanced have the potential to improve clinical efficacy and safety profile malignancies. Bispecific antibody-based immunotherapies have and are envisioned as a second wave of cancer immunotherapies. gained momentum in preclinical and clinical investigations Currently, there are more than 50 bispecific antibodies under following the regulatory approval of the T cell–redirecting clinical development for a range of indications, with promising antibody blinatumomab. In this review, we focus on emerging signs of therapeutic activity. We also discuss two approaches for and novel mechanisms of action of bispecific antibodies inter- in vivo secretion, direct gene delivery, and infusion of ex vivo acting with immune cells with at least one of their arms to gene-modified cells, which may become instrumental for the regulate the activity of the immune system by redirecting and/or clinical application of next-generation bispecific immunomod- reactivating effector cells toward tumor cells. These molecules, ulatory antibodies. Introduction of antibodies, such as linear gene fusions, domain-swapping strat- egies, and self-associating peptides and protein domains (Fig. 1B). The past decade has witnessed a number of cancer immunotherapy Multiple technology platforms are available for the design of bsAbs, breakthroughs, all of which involve the modulation of T cell–mediated allowing fine-tuning of binding valence, stoichiometry, size, flexi- immunity.
    [Show full text]
  • An Affibody Molecule Is Actively Transported Into the Cerebrospinal
    International Journal of Molecular Sciences Article An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor Sebastian W. Meister , Linnea C. Hjelm , Melanie Dannemeyer, Hanna Tegel, Hanna Lindberg, Stefan Ståhl and John Löfblom * Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; [email protected] (S.W.M.); [email protected] (L.C.H.); [email protected] (M.D.); [email protected] (H.T.); [email protected] (H.L.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +46-8-790-9659 Received: 6 March 2020; Accepted: 22 April 2020; Published: 23 April 2020 Abstract: The use of biotherapeutics for the treatment of diseases of the central nervous system (CNS) is typically impeded by insufficient transport across the blood–brain barrier. Here, we investigate a strategy to potentially increase the uptake into the CNS of an affibody molecule (ZSYM73) via binding to the transferrin receptor (TfR). ZSYM73 binds monomeric amyloid beta, a peptide involved in Alzheimer’s disease pathogenesis, with subnanomolar affinity. We generated a tri-specific fusion protein by genetically linking a single-chain variable fragment of the TfR-binding antibody 8D3 and an albumin-binding domain to the affibody molecule ZSYM73. Simultaneous tri-specific target engagement was confirmed in a biosensor experiment and the affinity for murine TfR was determined to 5 nM. Blockable binding to TfR on endothelial cells was demonstrated using flow cytometry and in a preclinical study we observed increased uptake of the tri-specific fusion protein into the cerebrospinal fluid 24 h after injection.
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • PET Imaging of HER2-Positive Tumors with Cu-64-Labeled
    Mol Imaging Biol (2019) 21:907Y916 DOI: 10.1007/s11307-018-01310-5 * World Molecular Imaging Society, 2019 Published Online: 7 January 2019 RESEARCH ARTICLE PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules Shibo Qi,1,2 Susan Hoppmann,2 Yingding Xu,2 Zhen Cheng 2 1School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China 2Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA Abstract Purpose: Previous studies has demonstrated the utility of human epidermal growth factor receptor type 2 (HER2) as an attractive target for cancer molecular imaging and therapy. An affibody protein with strong binding affinity for HER2, ZHER2:342, has been reported. Various methods of chelator conjugation for radiolabeling HER2 affibody molecules have been described in the literature including N-terminal conjugation, C-terminal conjugation, and other methods. Cu-64 has recently been extensively evaluated due to its half-life, decay properties, and availability. Our goal was to optimize the radiolabeling method of this affibody molecule with Cu- 64, and translate a positron emission tomography (PET) probe with the best in vivo performance to clinical PET imaging of HER2-positive cancers. Procedures: In our study, three anti-HER2 affibody proteins-based PET probes were prepared, and their in vivo performance was evaluated in mice bearing HER2-positive subcutaneous 39 SKOV3 tumors. The affibody analogues, Ac-Cys-ZHER2:342,Ac-ZHER2:342(Cys ), and Ac- ZHER2:342-Cys, were synthesized using the solid phase peptide synthesis method.
    [Show full text]
  • Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology
    FOCUS ON MOLECULAR IMAGING Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology Ahmet Krasniqi1, Matthias D’Huyvetter1, Nick Devoogdt1, Fredrik Y. Frejd2,3, Jens S¨orensen4,5, Anna Orlova6, Marleen Keyaerts*1,7, and Vladimir Tolmachev*3 1In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium; 2Affibody AB, Solna, Sweden; 3Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 4Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; 5Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; 6Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; and 7Nuclear Medicine Department, UZ Brussel, Brussels, Belgium major disadvantage is the long blood circulation time, with half-lives of up to 28 d, requiring delayed scanning time Imaging of expression of therapeutic targets may enable points typically between 4 and 6 d (Fig. 1A). Even at that stratification of patients for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable time, appreciable quantities of the tracer remain in the blood, region of heavy-chain–only immunoglobulins or nonimmunoglo- resulting in low sensitivity due to high background uptake and bulin scaffolds permits rapid localization of radiotracers in low specificity due to an enhanced permeability and retention tumors and rapid clearance from normal tissues. This makes effect, especially for targets with a low expression level. high-contrast imaging possible on the day of injection. This To overcome the slow clearance and extravasation, mAbs mini review focuses on small proteins for radionuclide-based have been engineered to smaller fragments such as antigen- imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments binding, variable, and single-chain variable fragments; within the field of oncology.
    [Show full text]
  • Engineering Bispecific Antibodies for Targeted Delivery of Cytotoxin- Loaded Nanoparticles to Tumour Cells
    Engineering bispecific antibodies for targeted delivery of cytotoxin- loaded nanoparticles to tumour cells by Karin Taylor Bachelor of Science (Genetics) Bachelor of Science Honours (Genetics) Graduate Certificate in Business A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 The Australian Institute for Bioengineering and Nanotechnology (AIBN) Abstract First-line cancer treatments, such as surgical removal of tumours, are necessary but highly invasive and can only be of therapeutic benefit if the cancer has not yet spread to other organs. Chemotherapy and radiotherapy can help to slow the spread of cancer, but the systemic exposure leads to cumulative and cytotoxic effects, which leave the patient immune-compromised and susceptible to organ failure. This highlights the need to develop targeted therapies capable of delivering such drugs directly to the cancer cells, to overcome drug resistance and limit the cytotoxic effects associated with chemotherapeutics. Monoclonal antibodies (mAbs) provide a means to target conjugated drugs or radio-labels while also having therapeutic benefits in their own right. Cancer cells are often characterised by the overexpression of particular cell surface biomarkers, and these biomarkers make ideal targets for delivery of drugs via specific mAbs. The epidermal growth factor receptor (EGFR) is a validated cell surface antigen that has been extensively evaluated in the literature. EGFR is associated with a number of different cancers including breast and colon, and anti-EGFR mAbs are approved for therapeutic use (e.g. panitumumab and cetuximab). Drug-conjugated anti-EGFR mAbs are also under pre- clinical and clinical evaluation. However significant challenges remain, as some cancers are refractive to mAb therapy due to pre-existing and acquired resistance to a given treatment, both mAb and drug related.
    [Show full text]
  • Targeted Delivery of Polymer Prodrug Conjugates for Cancer Therapy
    Investigator: Prashant Raj Bhattarai Targeted Delivery of Polymer Prodrug conjugates for Cancer therapy Doctoral Thesis Dissertation Presented by Prashant Raj Bhattarai To The Bouvé Graduate School of Health Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Science NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS August 2018 i Investigator: Prashant Raj Bhattarai Northeastern University Bouvé College of Health Sciences Dissertation Approval Dissertation title: Targeted Delivery of Polymer Prodrug conjugates for Cancer therapy Author: Prashant Raj Bhattarai Program: PhD in Pharmaceutical Sciences Approval for dissertation requirements for the Doctor of Philosophy in: Pharmaceutical Science Dissertation Committee (Chairman): Dr. Ban-An Khaw Date: 8/07/2018 Other committee members: Dr. Vladimir Torchilin Date: 8/07/2018 Dr. Jonghan Kim Date: 8/07/2018 Dr. Eugene Bernstein Date: 8/07/2018 Dr. Joel Berniac Date: 8/07/2018 Dean of the Bouvé College Graduate School of Health Sciences: Date: ii Investigator: Prashant Raj Bhattarai TABLE OF CONTENTS ABSTRACT iii ACKOWLEDGEMENTS v LIST OF TABLES vi LIST OF FIGURES vii LIST OF ACRONYMNS x 1) INTRODUCTION 1.1 Antibody targeted therapies 1 1.2 Bispecific Antibodies and Pretargeting Approach 1 1.3 Rationale for using Antibody fragments 3 1.4 Rationale for using Affibody: 5 1.5 Rationale for using biotin as a second cancer-targeting agent 6 1.6 Polymer prodrug conjugates for Cancer Therapy 7 1.7 Multidrug Resistance in tumor 8 1.8 Combination therapy 9 1.9 Spheroid Cell Culture 10 2) SPECIFIC AIMS 12 3) MATERIALS AND METHODS 14 3.1 Purification and Characterization of anti-HER2/neu Affibodies 3.2 Preparation and Characterization of anti-HER2/neu X anti-DTPA Fab bispecific 18 complex 3.3 Preparation and characterization of biotinylated anti-DTPA bispecific antibody 21 complex 23 3.4.
    [Show full text]