Single-Round, Multiplexed Antibody Mimetic Design Through Mrna Display** C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wo2015188839a2
Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839 -
Human Antibodies That Bind CXCR4 and Uses Thereof CXCR4-Bindende Humane Antikörper Und Deren Verwendungen Anticorps Humains Liant Le CXCR4 Et Utilisations Associées
(19) TZZ __T (11) EP 2 486 941 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 39/395 (2006.01) C07K 16/28 (2006.01) 15.03.2017 Bulletin 2017/11 (21) Application number: 12155398.6 (22) Date of filing: 01.10.2007 (54) Human antibodies that bind CXCR4 and uses thereof CXCR4-bindende humane Antikörper und deren Verwendungen Anticorps humains liant le CXCR4 et utilisations associées (84) Designated Contracting States: EP-A- 1 316 801 WO-A-2004/059285 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-2006/089141 US-A1- 2003 206 909 HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR • GHOBRIAL IRENE M ET AL: "The role of CXCR4 Designated Extension States: inhibitors as novel antiangiogenesis agents in RS cancer therapy", BLOOD, W.B.SAUNDERS COMPANY, ORLANDO, FL, vol. 104, no. 11 (30) Priority: 02.10.2006 US 827851 P PART1, 1 November 2004 (2004-11-01), pages 365A-366A, XP002458710, ISSN: 0006-4971 (43) Date of publication of application: • ENDRES M J ET AL: "CD4-INDEPENDENT 15.08.2012 Bulletin 2012/33 INFECTION BY HIV-2 IS MEDIATED BY FUSIN/CXCR4", CELL, CELL PRESS, (62) Document number(s) of the earlier application(s) in CAMBRIDGE, NA, US, vol. 87, 15 November 1996 accordance with Art. 76 EPC: (1996-11-15), pages745-756, XP002920421, ISSN: 07867192.2 / 2 066 351 0092-8674 • BARIBAUD FREDERIC ET AL: "Antigenically (73) Proprietor: E. -
EURL ECVAM Recommendation on Non-Animal-Derived Antibodies
EURL ECVAM Recommendation on Non-Animal-Derived Antibodies EUR 30185 EN Joint Research Centre This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. EURL ECVAM Recommendations The aim of a EURL ECVAM Recommendation is to provide the views of the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) on the scientific validity of alternative test methods, to advise on possible applications and implications, and to suggest follow-up activities to promote alternative methods and address knowledge gaps. During the development of its Recommendation, EURL ECVAM typically mandates the EURL ECVAM Scientific Advisory Committee (ESAC) to carry out an independent scientific peer review which is communicated as an ESAC Opinion and Working Group report. In addition, EURL ECVAM consults with other Commission services, EURL ECVAM’s advisory body for Preliminary Assessment of Regulatory Relevance (PARERE), the EURL ECVAM Stakeholder Forum (ESTAF) and with partner organisations of the International Collaboration on Alternative Test Methods (ICATM). Contact information European Commission, Joint Research Centre (JRC), Chemical Safety and Alternative Methods Unit (F3) Address: via E. -
WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT (51) International Patent Classification: co, California 94124 (US). DUBRIDGE, Robert B.; 825 A61K 39/395 (2006.01) C07K 16/28 (2006.01) Holly Road, Belmont, California 94002 (US). LEMON, A61P 35/00 (2006.01) C07K 16/46 (2006.01) Bryan D.; 2493 Dell Avenue, Mountain View, California 94043 (US). AUSTIN, Richard J.; 1169 Guerrero Street, (21) International Application Number: San Francisco, California 941 10 (US). PCT/US20 17/063 126 (74) Agent: LIN, Clark Y.; WILSON SONSINI GOODRICH (22) International Filing Date: & ROSATI, 650 Page Mill Road, Palo Alto, California 22 November 201 7 (22. 11.201 7) 94304 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Langi English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/426,069 23 November 2016 (23. 11.2016) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/426,077 23 November 2016 (23. 11.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: HARPOON THERAPEUTICS, INC. KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, [US/US]; 4000 Shoreline Court, Suite 250, South San Fran MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, cisco, California 94080 (US). -
WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/013231 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07K 14/705 (2006.01) C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/EP20 16/067468 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 2 1 July 20 16 (21 .07.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/194,882 2 1 July 2015 (21.07.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/364,414 20 July 2016 (20.07.2016) TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicants : XIANG, Sue D. -
Protein Scaffolds Proteingerüste Structures Protéiques
(19) TZZ _ _T (11) EP 2 215 246 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12N 15/62 (2006.01) 07.01.2015 Bulletin 2015/02 C07K 14/78 (2006.01) C40B 40/10 (2006.01) (21) Application number: 08845766.8 (86) International application number: PCT/US2008/012398 (22) Date of filing: 31.10.2008 (87) International publication number: WO 2009/058379 (07.05.2009 Gazette 2009/19) (54) PROTEIN SCAFFOLDS PROTEINGERÜSTE STRUCTURES PROTÉIQUES (84) Designated Contracting States: US-B1- 6 482 410 US-B1- 6 818 418 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • KOIDE A ET AL: "The fibronectin type III domain RO SE SI SK TR as a scaffold for novel binding proteins", JOURNAL OF MOLECULAR BIOLOGY, LONDON, (30) Priority: 31.10.2007 US 984209 P GB, vol. 284, no. 4, 11 December 1998 (1998-12-11), pages 1141-1151, XP004455886, (43) Date of publication of application: ISSN: 0022-2836, DOI: DOI:10.1006/JMBI. 11.08.2010 Bulletin 2010/32 1998.2238 • BATORI V ET AL: "Exploring the potential of the (73) Proprietor: MedImmune, LLC monobody scaffold:effects of loop elongation on Gaithersburg, MD 20878 (US) the stability of a fibronectin type III domain", PROTEIN ENGINEERING, OXFORD UNIVERSITY (72) Inventors: PRESS, SURREY, GB, vol. 15, no. 12, 1 January • WU, Herren 2002 (2002-01-01), pages 1015-1020, Boyds,MD 20841 (US) XP002996047, ISSN: 0269-2139, DOI: DOI: • BACA, Manuel 10.1093/PROTEIN/15.12.1015 Gaithersburg,MD 20878 (US) • KOIDE AKIKO ET AL: "Monobodies: antibody •SWERS,Jeffrey mimics based on the scaffold of the fibronectin Rockville,MD 20852 (US) type III domain", METHODS IN MOLECULAR • CHACKO, Benoy BIOLOGY, HUMANA PRESS INC, NJ, US, vol. -
Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy
Published OnlineFirst June 9, 2021; DOI: 10.1158/1078-0432.CCR-20-3770 CLINICAL CANCER RESEARCH | REVIEW Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy A C Belen Blanco1,2, Carmen Domínguez-Alonso1,2, and Luis Alvarez-Vallina1,2 ABSTRACT ◥ The recent advances in the field of immuno-oncology have here referred to as bispecific immunomodulatory antibodies, dramatically changed the therapeutic strategy against advanced have the potential to improve clinical efficacy and safety profile malignancies. Bispecific antibody-based immunotherapies have and are envisioned as a second wave of cancer immunotherapies. gained momentum in preclinical and clinical investigations Currently, there are more than 50 bispecific antibodies under following the regulatory approval of the T cell–redirecting clinical development for a range of indications, with promising antibody blinatumomab. In this review, we focus on emerging signs of therapeutic activity. We also discuss two approaches for and novel mechanisms of action of bispecific antibodies inter- in vivo secretion, direct gene delivery, and infusion of ex vivo acting with immune cells with at least one of their arms to gene-modified cells, which may become instrumental for the regulate the activity of the immune system by redirecting and/or clinical application of next-generation bispecific immunomod- reactivating effector cells toward tumor cells. These molecules, ulatory antibodies. Introduction of antibodies, such as linear gene fusions, domain-swapping strat- egies, and self-associating peptides and protein domains (Fig. 1B). The past decade has witnessed a number of cancer immunotherapy Multiple technology platforms are available for the design of bsAbs, breakthroughs, all of which involve the modulation of T cell–mediated allowing fine-tuning of binding valence, stoichiometry, size, flexi- immunity. -
Understanding Ubiquitin Recognition and Generating Affinity Reagents
Ubiquitin Engineering: Understanding Ubiquitin Recognition and Generating Affinity Reagents by Isabel Leung A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Isabel Leung 2017 Abstract Ubiquitin Engineering: Understanding Ubiquitin Recognition and Generating Affinity Reagents Isabel Leung Doctor of Philosophy Department of Molecular Genetics University of Toronto 2016 Protein-protein interactions are necessary for virtually all biological processes. There have been tremendous efforts to document the diversity of molecular recognition, and to understand how molecular recognition occurs. The understanding of molecular interaction has also served as the foundation for designing novel protein interactions for use in therapeutics, diagnostics and basic sciences. An attractive system for studying protein-protein interactions is the ubiquitin (Ub) system. Ub is a protein modifier that is combinatorially ligated onto substrate proteins to influence substrate turnover and function. Ub uses a common surface to interact with more than 1000 proteins and plays pivotal roles in cell physiology. Despite the substantial structural information on Ub mediated interactions, there is no clear understanding of how individual Ub residues contribute to Ub’s broad scope of interactions. To address this question, I used affinity enhanced Ub variants (Ubvs) as proxies of native Ub in saturation scanning. Using saturation scanning, I studied the interactions between Ubvs and two Ub specific proteases (USP), USP2 and USP21, and elucidated a common functional epitope that is critical for USP recognition. The functional epitope recognizes USP residues that are conserved among the human USP family, suggesting it may make functional contributions in many other USP interactions. -
WO 2017/156178 Al 14 September 2017 (14.09.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/156178 Al 14 September 2017 (14.09.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/28 (2006.01) C07K 16/30 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 16/18 (2006.01) A61K 39/395 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2017/021435 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 8 March 2017 (08.03.2017) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (25) Filing Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (26) Publication Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/305,092 8 March 2016 (08.03.2016) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: MAVERICK THERAPEUTICS, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [US/US]; 3260 B Bayshore Blvd., 1st Floor, Brisbane, CA TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 94005 (US). -
University of Copenhagen, DK-2200 København N, Denmark * Correspondence: [email protected]; Tel.: +45-2988-1134 † These Authors Contributed Equally to This Work
Toxin Neutralization Using Alternative Binding Proteins Jenkins, Timothy Patrick; Fryer, Thomas; Dehli, Rasmus Ibsen; Jürgensen, Jonas Arnold; Fuglsang-Madsen, Albert; Føns, Sofie; Laustsen, Andreas Hougaard Published in: Toxins DOI: 10.3390/toxins11010053 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Jenkins, T. P., Fryer, T., Dehli, R. I., Jürgensen, J. A., Fuglsang-Madsen, A., Føns, S., & Laustsen, A. H. (2019). Toxin Neutralization Using Alternative Binding Proteins. Toxins, 11(1). https://doi.org/10.3390/toxins11010053 Download date: 09. apr.. 2020 toxins Review Toxin Neutralization Using Alternative Binding Proteins Timothy Patrick Jenkins 1,† , Thomas Fryer 2,† , Rasmus Ibsen Dehli 3, Jonas Arnold Jürgensen 3, Albert Fuglsang-Madsen 3,4, Sofie Føns 3 and Andreas Hougaard Laustsen 3,* 1 Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; [email protected] 2 Department of Biochemistry, University of Cambridge, Cambridge CB3 0ES, UK; [email protected] 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; [email protected] (R.I.D.); [email protected] (J.A.J.); [email protected] (A.F.-M.); sofi[email protected] (S.F.) 4 Department of Biology, University of Copenhagen, DK-2200 København N, Denmark * Correspondence: [email protected]; Tel.: +45-2988-1134 † These authors contributed equally to this work. Received: 15 December 2018; Accepted: 12 January 2019; Published: 17 January 2019 Abstract: Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. -
WO 2017/147538 Al 31 August 2017 (31.08.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/147538 Al 31 August 2017 (31.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/85 (2006.01) C12N 15/90 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, PCT/US2017/01953 1 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, 24 February 2017 (24.02.2017) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (25) Filing Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (30) Priority Data: ZA, ZM, ZW. 62/300,387 26 February 2016 (26.02.2016) U S (84) Designated States (unless otherwise indicated, for every (71) Applicant: POSEIDA THERAPEUTICS, INC. kind of regional protection available): ARIPO (BW, GH, [US/US]; 4242 Campus Point Ct #700, San Diego, Califor GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, nia 92121 (US). -
Expanding the Boundaries of Biotherapeutics with Bispecific
BioDrugs https://doi.org/10.1007/s40259-018-0299-9 REVIEW ARTICLE Expanding the Boundaries of Biotherapeutics with Bispecifc Antibodies Bushra Husain1 · Diego Ellerman1 © The Author(s) 2018 Abstract Bispecifc antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra ® and Blincyto ®) and many more in clinical trials. The success of bispecifc antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecifc antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecifc antibodies for crossing the blood–brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specifc delivery or activity of antibodies. The diferent molecular solutions to the initial hurdles that limited the development of bispecifc antibodies have led to the current diverse set of bispecifc or multispecifc antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecifc antibodies come at the price of additional chal- lenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specifcity complicates the selection of relevant species for safety assessment.