Beyond Antibodies: Development of a Novel Molecular Scaffold Based on Human Chaperonin 10

Total Page:16

File Type:pdf, Size:1020Kb

Beyond Antibodies: Development of a Novel Molecular Scaffold Based on Human Chaperonin 10 Beyond Antibodies: Development of a Novel Molecular Scaffold Based on Human Chaperonin 10 Abdulkarim Mohammed Alsultan B.Pharm, M.Biotech A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute for Bioengineering and Nanotechnology (AIBN) Abstract This study reports the development of a new molecular scaffold based on human Chaperonin 10 (hCpn10), for the development of protein-based new molecular entities (NMEs) of diagnostic and therapeutic potential. The aims were to establish the fundamental basis of a molecular design for the scaffold, to enable the display of non-native peptides with binding activity to selected targets, while maintaining structural integrity and native heptameric conformation. Recently there has been much global interest in developing NMEs of protein and peptide origin, as therapeutic agents and diagnostic reagents. A class of NMEs are based on molecular scaffolds, whereby peptides with binding activity to a given target are displayed on a protein backbone or scaffold. The molecular scaffold provides a rigid folding unit which spatially brings together several exposed peptide loops, forming an extended interface that ensures tight binding of the target. Monoclonal antibodies (mAbs) are in essence molecular scaffolds, whereby complementarity determining regions, otherwise known as CDR peptide loops, extend from a framework and contact antigen. mAbs have been widely utilised in the life sciences and biopharmaceutical industries for the development of diagnostic probes and biologic medicines, respectively. However the current patent landscape surrounding mAbs is complex and commercialisation of newly developed antibodies can be hampered by licensing agreements and royalty stacking. Molecular scaffolds are an alternative to antibodies, and some of the scaffolds in development include lipocalins, fibronectin domain, DARPins consensus repeat domain and avimers, to name a few. hCpn10 is a homo-oligomer composed of seven subunits. Each hCpn10 monomer is composed of a β-barrel core structure that is flanked by two flexible loops, known as the β-hairpin and mobile loop. It is proposed the mobile could be substituted with peptides and so increase the apparent affinity to a given target compared to that of naked peptides, due to avidity conferred by the heptameric structure. This study focussed on assessing the properties of hCpn10 and determining whether this molecule could be utilised as a scaffold for the development of NMEs that have binding activity to selected targets. i In the first example of the utility of hCpn10 as a molecular scaffold, the E-76 peptide, which binds to Factor VIIa (FVIIa) of the extrinsic coagulation cascade pathway, was substituted into the mobile loop region of hCpn10 creating a NME designated CE76 with anticoagulant activity. Anticoagulants prevent blood from clotting and have clinical applications associated with coronary heart disease and stroke. Common anticoagulants include heparin, warfarin, and dicoumarol. Although these compounds have proved beneficial they are not without complications and side effects. An NME has been created through display of the E-76 peptide on the hCpn10 scaffold, creating the highly avid CE76, which binds FVIIa with sub- nanomolar affinity. Prior to creation of CE76 NME, molecular dynamic (MD) simulation studies were conducted in order to optimise linkers at the N- and C-junctures of the mobile loop, so as to optimise mobile loop orientation and conserve native-like heptamer formation. Simulation studies revealed that inserting proline residues at both ends of the mobile loop region stabilized the new CE76 variants (named CE76P1) and facilitated heptamer assembly. Characterisation by size exclusion chromatography confirmed CE76P1 formed a stable heptamer, and bound specifically to the exosite of FVIIa, and subsequently inhibited the activation of Factor X (IC50 1.5 nM). CE76P1 prologed the extrinsic pathway 4-fold higher than E-76 alone, while not affecting the intrinsic coagulation cascade as determined by prothrombin time (PT) and thromboelastography (TEG) assays. CE76P1 has the potential to be a new biologic drug with potent anticoagulant properties. The utility of hCpn10 as a molecular scaffold was further assessed by incorporating P7 peptide into the mobile loop, creating a NME designated CP7. P7 peptide binds to CD44, which is overexpressed in cancers of the breast, colon, prostate and brain. Binding studies revealed that CP7 bound specifically to recombinant CD44 (KD 1.32 nM), while no binding was detected to surface protein CD24. Immunofluorescence imaging and flow cytometry studies showed increased binding activity of CP7 to breast adenocarcinoma MDA-MB-486 cells compared to P7 peptide alone. Further expression studies using peptides that bind VEGFR and FGFR, were incorporated into hCpn10 scaffold also resulted in correct assembly of heptamer. ii Based on these studies associated with the incorporation of selected peptides into the hCpn10 scaffold, it is evident that hCpn10 can be utilised as a molecular scaffold for the developing of NMEs with therapeutic and diagnostic potential. The demonstration that human Cpn10 is a useful molecular scaffold for the creation of NMEs in a “beyond antibody” approach offers the opportunity to create new intellectual property in the area of biologic medicines and bioanalytical reagents/diagnostics. iii Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iv Publications during candidature No publications Publications included in this thesis No publications included v Contributions by others to the thesis Dr. Herbert Treutlein, of Computist Bio-Nanotech, RMIT University, contributed to the research by conducting MD simulations presented in Chapter 3. Dr. Sharon Du of the Translational Research Institute (TRI), School of Medicine, University of Queensland, contributed in designing clotting assays presented in Chapter 4. Ms. Dinora Roche Recinos contributed to CR2VEGF-P2 expression in Chapter 6. Statement of parts of the thesis submitted to qualify for the award of another degree None vi Acknowledgements “The one who is not thankful for the few blessings will not be thankful for the many, and the one who is not thankful to the people will not be thankful to Allah” Prophet Mohammed (Peace be upon him and his progeny) First and foremost, I am grateful and thankful to Almighty Allah “GOD” for His limitless mercy, as well as to the Messenger of Allah Prophet Mohammed and his progeny peace be upon them all for surrounding me with infinite blessing. I express my deepest thanks to my guardians, supporters and advisors Associate Professor Stephen Mahler (principal supervisor) and Dr. David Chin (co-supervisor) for their encouragements and continued guidance during my study. It has been a privilege to work with you, to be under your supervisions and to learn more from you both. To all my colleagues past and current members of Gray Group and National Biologics Facility (NBF) at the Australian Institute for Bioengineering and Nanotechnology (AIBN), especially: Professor Peter Gray (Group leader), Martina Jones, Christopher Howard, Sumukh Kumble, Matthew Smede, Vanessa Sandford, Liam Nolan, Christopher de Bakker, Karin Taylor, Kar Man Leung, Jeff Hou, Kebaneilwe Lebani, Marianne Gillard, Camila Orellana, Dinora Roche Recinos, Emily Chan, Gency Gunasingh, Jay Heise-Seabrook, Jiang Eric Zhu, Kym Hoger, Lyndon Raftery, Michael Song, Michael Yeh, Mohammed AlFaleh, Neetika Arora, Steve Goodall, Tim Ruder, Trent Munro, Veronica Martinez, Xiaoli Chen, Zainab Almansour, Nadya Shale, Edwin Huang, Aidan Bell, and David Crowley, “a small thing in your eyes is so big in main”, so thank you all for your help and your advices that you generously gave at various stages in my journey. Enormous thanks to Sumukh Kumble for assisting in proofreading most of my thesis, and special thanks to Andrea Schaller for helping in proofreading the modelling in Chapter 3, and thank you both for
Recommended publications
  • Affibody Molecules for Epidermal Growth Factor Receptor Targeting
    Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate.
    [Show full text]
  • Wo2015188839a2
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839
    [Show full text]
  • Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage
    Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen B.S. Biomedical Engineering University of Minnesota – Twin Cities, 2012 Submitted to the Department of Biological Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering at the Massachusetts Institute of Technology February 2019 © 2019 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ____________________________________________________________ Griffin Clausen Department of Biological Engineering January 14, 2019 Certified by: ___________________________________________________________________ Angela Belcher James Mason Crafts Professor of Biological Engineering and Materials Science Thesis Supervisor Accepted by: ___________________________________________________________________ Forest White Professor of Biological Engineering Graduate Program Committee Chair This doctoral thesis has been examined by the following committee: Amy Keating Thesis Committee Chair Professor of Biology and Biological Engineering Massachusetts Institute of Technology Angela Belcher Thesis Supervisor James Mason Crafts Professor of Biological Engineering and Materials Science Massachusetts Institute of Technology Paul Blainey Core Member, Broad Institute Associate Professor of Biological Engineering Massachusetts Institute of Technology 2 Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen Submitted
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT (51) International Patent Classification: Lennart; c/o Orionis Biosciences NV, Rijvisschestraat 120, A61K 38/00 (2006.01) C07K 14/555 (2006.01) Zwijnaarde, B-9052 (BE). TAVERNIER, Jan; c/o Orionis A61K 38/21 (2006.01) C12N 15/09 (2006.01) Biosciences NV, Rijvisschestraat 120, Zwijnaarde, B-9052 C07K 14/52 (2006.01) (BE). (21) International Application Number: (74) Agent: ALTIERI, Stephen, L. et al; Morgan, Lewis & PCT/US2018/016857 Bockius LLP, 1111 Pennsylvania Avenue, NW, Washing ton, D.C. 20004 (US). (22) International Filing Date: 05 February 2018 (05.02.2018) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/454,992 06 February 2017 (06.02.2017) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicants: ORIONIS BIOSCIENCES, INC. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 275 Grove Street, Newton, MA 02466 (US).
    [Show full text]
  • WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT (51) International Patent Classification: co, California 94124 (US). DUBRIDGE, Robert B.; 825 A61K 39/395 (2006.01) C07K 16/28 (2006.01) Holly Road, Belmont, California 94002 (US). LEMON, A61P 35/00 (2006.01) C07K 16/46 (2006.01) Bryan D.; 2493 Dell Avenue, Mountain View, California 94043 (US). AUSTIN, Richard J.; 1169 Guerrero Street, (21) International Application Number: San Francisco, California 941 10 (US). PCT/US20 17/063 126 (74) Agent: LIN, Clark Y.; WILSON SONSINI GOODRICH (22) International Filing Date: & ROSATI, 650 Page Mill Road, Palo Alto, California 22 November 201 7 (22. 11.201 7) 94304 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Langi English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/426,069 23 November 2016 (23. 11.2016) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/426,077 23 November 2016 (23. 11.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: HARPOON THERAPEUTICS, INC. KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, [US/US]; 4000 Shoreline Court, Suite 250, South San Fran MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, cisco, California 94080 (US).
    [Show full text]
  • An Affibody Molecule Is Actively Transported Into the Cerebrospinal
    International Journal of Molecular Sciences Article An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor Sebastian W. Meister , Linnea C. Hjelm , Melanie Dannemeyer, Hanna Tegel, Hanna Lindberg, Stefan Ståhl and John Löfblom * Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; [email protected] (S.W.M.); [email protected] (L.C.H.); [email protected] (M.D.); [email protected] (H.T.); [email protected] (H.L.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +46-8-790-9659 Received: 6 March 2020; Accepted: 22 April 2020; Published: 23 April 2020 Abstract: The use of biotherapeutics for the treatment of diseases of the central nervous system (CNS) is typically impeded by insufficient transport across the blood–brain barrier. Here, we investigate a strategy to potentially increase the uptake into the CNS of an affibody molecule (ZSYM73) via binding to the transferrin receptor (TfR). ZSYM73 binds monomeric amyloid beta, a peptide involved in Alzheimer’s disease pathogenesis, with subnanomolar affinity. We generated a tri-specific fusion protein by genetically linking a single-chain variable fragment of the TfR-binding antibody 8D3 and an albumin-binding domain to the affibody molecule ZSYM73. Simultaneous tri-specific target engagement was confirmed in a biosensor experiment and the affinity for murine TfR was determined to 5 nM. Blockable binding to TfR on endothelial cells was demonstrated using flow cytometry and in a preclinical study we observed increased uptake of the tri-specific fusion protein into the cerebrospinal fluid 24 h after injection.
    [Show full text]
  • Selection of an Artificial Binding Protein Against the Ectodomain of PTH1R
    Selection of an artificial binding protein against the ectodomain of PTH1R Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt bei der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Qi Zhang geboren am 21.09.1983 in Shaanxi, China Gutachter /in 1. PD. Dr. Hauke Lilie 2. Prof. Dr. Jochen Balbach 3. Prof. Dr. Annette G. Beck-Sickinger Verteidigungsdatum: 14.03.2013 Zusammenfassung In den vergangenen Jahrzehnten fanden mehr als 30 Immunglobuline (IgGs) und deren Derivate Anwendung in der klinischen Praxis. Trotz des großen Erfolgs solcher Antikörper-basierter Medikamente traten auch einige Limitationen auf. Gerüstproteine stellen eine Alternative zu herkömmlichen Antikörpern dar. Sie weisen meist eine hohe thermodynamische Stabilität auf und bestehen aus einer einzelnen Polypeptidkette ohne Disulfidbrücken. Universelle Bindestellen können wie beim humanen Fibronectin III und bei Anticalinen in flexiblen Loop-Regionen erzeugt werden oder auf rigiden Sekundärstrukturelementen, wie im Fall der Affibodies, DARPine und Affiline. In der vorliegenden Arbeit wurde eine Protein-Bibliothek auf Basis des humanen γB-Kristallins, unter Randomisierung von 8 oberflächenexponierten Aminosäuren auf einem β-Faltblatt der N-terminalen Domäne des Proteins, hergestellt. Ein kürzlich entwickeltes Screening-System, das T7-basierte Phagen-Display, wurde zur Durchmusterung der Bibliothek auf potentielle Binder angewandt. Dabei erfolgt die Assemblierung der Protein-präsentierenden Phagenpartikel ohne einen Transportschritt über die Zellmembran hinweg bereits im Cytoplasma von E. coli. G-Protein gekoppelte Rezeptoren (GPCRs) bilden nur schwerlich für Strukturuntersuchungen geeignete, geordnete Kristallstrukturen aus. Kleine, gut lösliche Bindeproteine könnten sie in einer bestimmten Konformation fixieren und so den Anteil an hydrophilen Resten auf der Proteinoberfläche erhöhen.
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • PET Imaging of HER2-Positive Tumors with Cu-64-Labeled
    Mol Imaging Biol (2019) 21:907Y916 DOI: 10.1007/s11307-018-01310-5 * World Molecular Imaging Society, 2019 Published Online: 7 January 2019 RESEARCH ARTICLE PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules Shibo Qi,1,2 Susan Hoppmann,2 Yingding Xu,2 Zhen Cheng 2 1School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China 2Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, 94305-5344, USA Abstract Purpose: Previous studies has demonstrated the utility of human epidermal growth factor receptor type 2 (HER2) as an attractive target for cancer molecular imaging and therapy. An affibody protein with strong binding affinity for HER2, ZHER2:342, has been reported. Various methods of chelator conjugation for radiolabeling HER2 affibody molecules have been described in the literature including N-terminal conjugation, C-terminal conjugation, and other methods. Cu-64 has recently been extensively evaluated due to its half-life, decay properties, and availability. Our goal was to optimize the radiolabeling method of this affibody molecule with Cu- 64, and translate a positron emission tomography (PET) probe with the best in vivo performance to clinical PET imaging of HER2-positive cancers. Procedures: In our study, three anti-HER2 affibody proteins-based PET probes were prepared, and their in vivo performance was evaluated in mice bearing HER2-positive subcutaneous 39 SKOV3 tumors. The affibody analogues, Ac-Cys-ZHER2:342,Ac-ZHER2:342(Cys ), and Ac- ZHER2:342-Cys, were synthesized using the solid phase peptide synthesis method.
    [Show full text]
  • Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology
    FOCUS ON MOLECULAR IMAGING Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology Ahmet Krasniqi1, Matthias D’Huyvetter1, Nick Devoogdt1, Fredrik Y. Frejd2,3, Jens S¨orensen4,5, Anna Orlova6, Marleen Keyaerts*1,7, and Vladimir Tolmachev*3 1In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium; 2Affibody AB, Solna, Sweden; 3Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 4Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; 5Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; 6Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; and 7Nuclear Medicine Department, UZ Brussel, Brussels, Belgium major disadvantage is the long blood circulation time, with half-lives of up to 28 d, requiring delayed scanning time Imaging of expression of therapeutic targets may enable points typically between 4 and 6 d (Fig. 1A). Even at that stratification of patients for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable time, appreciable quantities of the tracer remain in the blood, region of heavy-chain–only immunoglobulins or nonimmunoglo- resulting in low sensitivity due to high background uptake and bulin scaffolds permits rapid localization of radiotracers in low specificity due to an enhanced permeability and retention tumors and rapid clearance from normal tissues. This makes effect, especially for targets with a low expression level. high-contrast imaging possible on the day of injection. This To overcome the slow clearance and extravasation, mAbs mini review focuses on small proteins for radionuclide-based have been engineered to smaller fragments such as antigen- imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments binding, variable, and single-chain variable fragments; within the field of oncology.
    [Show full text]