Diseño E Implementación De Nuevas Herramientas Para La Solubilización, Evolución Y Cristalogénesis De Proteínas”

Total Page:16

File Type:pdf, Size:1020Kb

Diseño E Implementación De Nuevas Herramientas Para La Solubilización, Evolución Y Cristalogénesis De Proteínas” Tesis de Doctorado Programa de Desarrollo de Ciencias Básicas (PEDECIBA) “Diseño e implementación de nuevas herramientas para la solubilización, evolución y cristalogénesis de proteínas” Magister Agustín Correa Tutor: Dr. Pedro M. Alzari Co-Tutor: Dr. Pablo Oppezzo Tribunal: Dr. Alejandro Buschiazzo Dr. Gualberto González Dr. Pablo Aguilar “Sin experimentación no hay verdad” Aristóteles 384-322 a.C. Contenido RESUMEN: ..................................................................................................................................... 3 INTRODUCCIÓN ............................................................................................................................. 7 1. Expresión de proteínas recombinantes en E. coli, desafíos y soluciones ............................. 7 1.1 Generalidades ................................................................................................................. 7 1.2 Primeros pasos a seguir para la expresión de una PR. .................................................... 8 1.3 Promotores para la producción de PR y secuencias cercanas ........................................ 9 1.4 Cepas de E. coli utilizadas para la expresión de PRs ..................................................... 11 1.5 Condiciones de cultivo .................................................................................................. 15 1.6 Proteínas de Fusión o “tags”. ........................................................................................ 16 1.7 Evaluación de la expresión en forma HTS ..................................................................... 19 1.8 Renaturalización de cuerpos de inclusión ..................................................................... 20 1.9 Evolución dirigida para la expresión soluble de PR ....................................................... 21 1.10 Caracterización proteica.............................................................................................. 23 2. Generación de proteínas de unión ...................................................................................... 24 2.1 Generalidades ............................................................................................................... 24 2.2 Diferentes “scaffolds” para la generación de proteínas de unión y sus aplicaciones. .. 25 2.3 Diferentes métodos de selección para la obtención de “binders” ............................... 32 3. Cristalogénesis: nuevas estrategias para un viejo problema .............................................. 37 3.1 Generalidades ............................................................................................................... 37 3.2 Determinación de dominios o fragmentos proteicos para su cristalización ................. 39 3.3 Remoción de sitios glicosilados ..................................................................................... 40 3.4 Reducción de la entropía de superficie (SER) ................................................................ 41 3.5 Simetrización sintética de proteínas ............................................................................. 42 3.6 Fusión con proteínas para la cristalización ................................................................... 43 3.7 Proteínas de unión como chaperonas de cristalización ................................................ 45 OBJETIVOS ................................................................................................................................... 48 RESULTADOS ............................................................................................................................... 50 1. Generación de nuevas herramientas para la expresión soluble de PR. .......................... 50 2. Aplicación y caracterización de una nueva librería de Afitinas como inhibidores enzimáticos de glicosidasas. .................................................................................................... 63 3. Generación de nuevas herramientas para la cristalogénesis de PRs. ............................. 79 3.1 Fusiones covalentes al extremo C-terminal de CelD con proteínas blanco .................. 79 1 3.2 Generación de superficies de unión en CelD para obtener cristales de complejos entre CelD y la proteína blanco. ................................................................................................... 88 Materiales y métodos ............................................................................................................. 96 DISCUSIÓN Y CONCLUSIONES ................................................................................................... 103 BIBLIOGRAFÍA ............................................................................................................................ 121 ANEXO I: .................................................................................................................................... 138 Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: Advantages of high-throughput screening............................................................................ 138 ANEXO II: ................................................................................................................................... 155 Overcoming the solubility problem in E. coli: available approaches for recombinant protein production. ............................................................................................................................ 155 2 RESUMEN: El estudio de las proteínas y su rol biológico en la fisiología humana ha sido motivo de numerosas investigaciones tanto para las áreas de las ciencias básicas (estudios biofísicos, bioquímicos o estructurales) como aplicadas (biotecnología, salud humana, etc.). En este contexto la disponibilidad de la estructura tridimensional proteica, principalmente mediante la cristalografía de rayos X, ha sido fundamental para el entendimiento de las diversas funciones proteicas. Uno de los primeros impedimentos para el estudio funcional de las proteínas por técnicas cristalográficas ha sido la obtención de una proteína específica en estado puro y en cantidades suficientes. La posibilidad de alcanzar estas características raramente se logra directamente del huésped natural llevando a la producción de la proteína en forma recombinante como única alternativa posible. Dentro de los posibles huéspedes el más ampliamente utilizado es Escherichia coli (E. coli), que si bien en muchos casos permite producir y purificar grandes cantidades de proteínas recombinantes (PRs), se estima que sólo un 30% de los genes clonados en esta bacteria se logran expresar de forma soluble y homogénea (1). Sin embargo, mediante la evaluación de diversas variables como ser diferentes promotores procariotas, proteínas de fusión, temperatura de inducción entre otras, es posible incrementar las probabilidades de obtener un producto soluble, homogéneo y en cantidades óptimas (2, 3). Parte de este trabajo de Tesis está abocado a generar metodologías que faciliten la obtención de proteínas solubles y en estado homogéneo. Con el objetivo de evaluar la mayor cantidad de variables en el menor tiempo posible, es que en el presente trabajo se generó una serie de 12 vectores de expresión en E. coli, que permiten realizar un clonado con alta eficiencia en paralelo e independiente de la secuencia (4). La disponibilidad de esta técnica es un factor fundamental para cuando se trabaja con distintas construcciones y varias PRs en simultáneo. En esta tesis, además de generar esta serie de vectores, se propone el uso de una nueva proteína de fusión para ayudar en la expresión soluble de distintas PRs. Esta proteína de fusión corresponde a una versión truncada de la endoglucanasa D (CelDnc) de Clostridium thermocellum, siendo una proteína termostable y expresada en cantidades masivas en E. coli (5). Nuestro trabajo muestra que esta proteína de fusión puede llevar a una mejora en la obtención del producto soluble y que al menos para una de las proteínas estudiadas se comporta igual o mejor, que otras proteínas de fusión difundidas comercialmente como MBP, SUMO, DsbC y Trx. Uno de los principales avances y aplicaciones más fascinantes de las PRs es su aplicación en la medicina. La generación de moléculas que pueden ser inyectadas en seres humanos con fines terapéuticos y/o de diagnóstico abre una puerta de gran interés en el campo de la medicina 3 (6). En este sentido, la generación de pequeñas moléculas (100-800 Da) que pueden funcionar como inhibidores de distintas enzimas y receptores ha tenido mucho éxito en el tratamiento contra diversos tipos de cáncer como es el caso de los inhibidores de tirosina quinasa: Erlotinib (Tarceva®), Imatinib (Gleevec®) y Dasatinib (Sprycel®) entre otros (7). Sin embargo este tipo de compuestos se encuentra con el problema que difícilmente pueden inhibir interacciones proteína-proteína, lo que muchas veces puede ser de gran utilidad en diversas terapias contra el cáncer (8). Los Anticuerpos monoclonales (AcMo), han surgido como una alternativa importante, cuando se requiere de interacciones más complejas o bien la activación del propio sistema inmune para la destrucción específica de la célula tumoral. Estas moléculas de mayor tamaño (>150 kDa) y mayor complejidad estructural y funcional están siendo cada vez más utilizadas en numerosas aplicaciones médicas para el tratamiento de diferentes patologías infecciosas, inmunes, cardiovasculares y diversos tipos de cáncer (9). Por ejemplo el anticuerpo
Recommended publications
  • Wo2015188839a2
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839
    [Show full text]
  • Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage
    Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen B.S. Biomedical Engineering University of Minnesota – Twin Cities, 2012 Submitted to the Department of Biological Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering at the Massachusetts Institute of Technology February 2019 © 2019 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ____________________________________________________________ Griffin Clausen Department of Biological Engineering January 14, 2019 Certified by: ___________________________________________________________________ Angela Belcher James Mason Crafts Professor of Biological Engineering and Materials Science Thesis Supervisor Accepted by: ___________________________________________________________________ Forest White Professor of Biological Engineering Graduate Program Committee Chair This doctoral thesis has been examined by the following committee: Amy Keating Thesis Committee Chair Professor of Biology and Biological Engineering Massachusetts Institute of Technology Angela Belcher Thesis Supervisor James Mason Crafts Professor of Biological Engineering and Materials Science Massachusetts Institute of Technology Paul Blainey Core Member, Broad Institute Associate Professor of Biological Engineering Massachusetts Institute of Technology 2 Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen Submitted
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/144999 Al 09 August 2018 (09.08.2018) W ! P O PCT (51) International Patent Classification: Lennart; c/o Orionis Biosciences NV, Rijvisschestraat 120, A61K 38/00 (2006.01) C07K 14/555 (2006.01) Zwijnaarde, B-9052 (BE). TAVERNIER, Jan; c/o Orionis A61K 38/21 (2006.01) C12N 15/09 (2006.01) Biosciences NV, Rijvisschestraat 120, Zwijnaarde, B-9052 C07K 14/52 (2006.01) (BE). (21) International Application Number: (74) Agent: ALTIERI, Stephen, L. et al; Morgan, Lewis & PCT/US2018/016857 Bockius LLP, 1111 Pennsylvania Avenue, NW, Washing ton, D.C. 20004 (US). (22) International Filing Date: 05 February 2018 (05.02.2018) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/454,992 06 February 2017 (06.02.2017) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicants: ORIONIS BIOSCIENCES, INC. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 275 Grove Street, Newton, MA 02466 (US).
    [Show full text]
  • WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/098356 Al 31 May 2018 (31.05.2018) W !P O PCT (51) International Patent Classification: co, California 94124 (US). DUBRIDGE, Robert B.; 825 A61K 39/395 (2006.01) C07K 16/28 (2006.01) Holly Road, Belmont, California 94002 (US). LEMON, A61P 35/00 (2006.01) C07K 16/46 (2006.01) Bryan D.; 2493 Dell Avenue, Mountain View, California 94043 (US). AUSTIN, Richard J.; 1169 Guerrero Street, (21) International Application Number: San Francisco, California 941 10 (US). PCT/US20 17/063 126 (74) Agent: LIN, Clark Y.; WILSON SONSINI GOODRICH (22) International Filing Date: & ROSATI, 650 Page Mill Road, Palo Alto, California 22 November 201 7 (22. 11.201 7) 94304 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Langi English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/426,069 23 November 2016 (23. 11.2016) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/426,077 23 November 2016 (23. 11.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: HARPOON THERAPEUTICS, INC. KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, [US/US]; 4000 Shoreline Court, Suite 250, South San Fran MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, cisco, California 94080 (US).
    [Show full text]
  • Selection of an Artificial Binding Protein Against the Ectodomain of PTH1R
    Selection of an artificial binding protein against the ectodomain of PTH1R Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt bei der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Qi Zhang geboren am 21.09.1983 in Shaanxi, China Gutachter /in 1. PD. Dr. Hauke Lilie 2. Prof. Dr. Jochen Balbach 3. Prof. Dr. Annette G. Beck-Sickinger Verteidigungsdatum: 14.03.2013 Zusammenfassung In den vergangenen Jahrzehnten fanden mehr als 30 Immunglobuline (IgGs) und deren Derivate Anwendung in der klinischen Praxis. Trotz des großen Erfolgs solcher Antikörper-basierter Medikamente traten auch einige Limitationen auf. Gerüstproteine stellen eine Alternative zu herkömmlichen Antikörpern dar. Sie weisen meist eine hohe thermodynamische Stabilität auf und bestehen aus einer einzelnen Polypeptidkette ohne Disulfidbrücken. Universelle Bindestellen können wie beim humanen Fibronectin III und bei Anticalinen in flexiblen Loop-Regionen erzeugt werden oder auf rigiden Sekundärstrukturelementen, wie im Fall der Affibodies, DARPine und Affiline. In der vorliegenden Arbeit wurde eine Protein-Bibliothek auf Basis des humanen γB-Kristallins, unter Randomisierung von 8 oberflächenexponierten Aminosäuren auf einem β-Faltblatt der N-terminalen Domäne des Proteins, hergestellt. Ein kürzlich entwickeltes Screening-System, das T7-basierte Phagen-Display, wurde zur Durchmusterung der Bibliothek auf potentielle Binder angewandt. Dabei erfolgt die Assemblierung der Protein-präsentierenden Phagenpartikel ohne einen Transportschritt über die Zellmembran hinweg bereits im Cytoplasma von E. coli. G-Protein gekoppelte Rezeptoren (GPCRs) bilden nur schwerlich für Strukturuntersuchungen geeignete, geordnete Kristallstrukturen aus. Kleine, gut lösliche Bindeproteine könnten sie in einer bestimmten Konformation fixieren und so den Anteil an hydrophilen Resten auf der Proteinoberfläche erhöhen.
    [Show full text]
  • WO 2017/156178 Al 14 September 2017 (14.09.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/156178 Al 14 September 2017 (14.09.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/28 (2006.01) C07K 16/30 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 16/18 (2006.01) A61K 39/395 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2017/021435 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 8 March 2017 (08.03.2017) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (25) Filing Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (26) Publication Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/305,092 8 March 2016 (08.03.2016) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: MAVERICK THERAPEUTICS, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [US/US]; 3260 B Bayshore Blvd., 1st Floor, Brisbane, CA TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 94005 (US).
    [Show full text]
  • University of Copenhagen, DK-2200 København N, Denmark * Correspondence: [email protected]; Tel.: +45-2988-1134 † These Authors Contributed Equally to This Work
    Toxin Neutralization Using Alternative Binding Proteins Jenkins, Timothy Patrick; Fryer, Thomas; Dehli, Rasmus Ibsen; Jürgensen, Jonas Arnold; Fuglsang-Madsen, Albert; Føns, Sofie; Laustsen, Andreas Hougaard Published in: Toxins DOI: 10.3390/toxins11010053 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Jenkins, T. P., Fryer, T., Dehli, R. I., Jürgensen, J. A., Fuglsang-Madsen, A., Føns, S., & Laustsen, A. H. (2019). Toxin Neutralization Using Alternative Binding Proteins. Toxins, 11(1). https://doi.org/10.3390/toxins11010053 Download date: 09. apr.. 2020 toxins Review Toxin Neutralization Using Alternative Binding Proteins Timothy Patrick Jenkins 1,† , Thomas Fryer 2,† , Rasmus Ibsen Dehli 3, Jonas Arnold Jürgensen 3, Albert Fuglsang-Madsen 3,4, Sofie Føns 3 and Andreas Hougaard Laustsen 3,* 1 Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; [email protected] 2 Department of Biochemistry, University of Cambridge, Cambridge CB3 0ES, UK; [email protected] 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; [email protected] (R.I.D.); [email protected] (J.A.J.); [email protected] (A.F.-M.); sofi[email protected] (S.F.) 4 Department of Biology, University of Copenhagen, DK-2200 København N, Denmark * Correspondence: [email protected]; Tel.: +45-2988-1134 † These authors contributed equally to this work. Received: 15 December 2018; Accepted: 12 January 2019; Published: 17 January 2019 Abstract: Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year.
    [Show full text]
  • Beyond Antibodies: Development of a Novel Molecular Scaffold Based on Human Chaperonin 10
    Beyond Antibodies: Development of a Novel Molecular Scaffold Based on Human Chaperonin 10 Abdulkarim Mohammed Alsultan B.Pharm, M.Biotech A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute for Bioengineering and Nanotechnology (AIBN) Abstract This study reports the development of a new molecular scaffold based on human Chaperonin 10 (hCpn10), for the development of protein-based new molecular entities (NMEs) of diagnostic and therapeutic potential. The aims were to establish the fundamental basis of a molecular design for the scaffold, to enable the display of non-native peptides with binding activity to selected targets, while maintaining structural integrity and native heptameric conformation. Recently there has been much global interest in developing NMEs of protein and peptide origin, as therapeutic agents and diagnostic reagents. A class of NMEs are based on molecular scaffolds, whereby peptides with binding activity to a given target are displayed on a protein backbone or scaffold. The molecular scaffold provides a rigid folding unit which spatially brings together several exposed peptide loops, forming an extended interface that ensures tight binding of the target. Monoclonal antibodies (mAbs) are in essence molecular scaffolds, whereby complementarity determining regions, otherwise known as CDR peptide loops, extend from a framework and contact antigen. mAbs have been widely utilised in the life sciences and biopharmaceutical industries for the development of diagnostic probes and biologic medicines, respectively. However the current patent landscape surrounding mAbs is complex and commercialisation of newly developed antibodies can be hampered by licensing agreements and royalty stacking. Molecular scaffolds are an alternative to antibodies, and some of the scaffolds in development include lipocalins, fibronectin domain, DARPins consensus repeat domain and avimers, to name a few.
    [Show full text]
  • WO 2017/147538 Al 31 August 2017 (31.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/147538 Al 31 August 2017 (31.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/85 (2006.01) C12N 15/90 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, PCT/US2017/01953 1 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, 24 February 2017 (24.02.2017) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (25) Filing Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (30) Priority Data: ZA, ZM, ZW. 62/300,387 26 February 2016 (26.02.2016) U S (84) Designated States (unless otherwise indicated, for every (71) Applicant: POSEIDA THERAPEUTICS, INC. kind of regional protection available): ARIPO (BW, GH, [US/US]; 4242 Campus Point Ct #700, San Diego, Califor GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, nia 92121 (US).
    [Show full text]
  • WO 2018/035503 Al 22 February 2018 (22.02.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/035503 Al 22 February 2018 (22.02.2018) W !P O PCT (51) International Patent Classification: (71) Applicant: THE REGENTS OF THE UNIVERSITY OF C12N 9/22 (2006.01) C12N 9/16 (2006.01) CALIFORNIA [US/US]; 1111 Franklin Street, 5th Floor, CI2N 15/85 (2006.01) C12N 15/82 (2006.01) Oakland, California 94607-5200 (US). CI2N 15/86 (2006.01) C12N 15/11 (2006.01) (72) Inventors; and C12N 15/861 (2006.01) C12N 15/113 (2010.01) (71) Applicants: MALI, Prashant [US/US]; c/o U C San Diego, CI2N 15/87 (2006.01) A61K 35/76 (2015.01) 9500 Oilman Drive, Mail Code: 0910, La Jolla, California C12N 15/63 (2006.01) 92093 (US). KATREKAR, Dhruva [US/US]; c/o U C San (21) International Application Number: Diego, 9500 Oilman Drive, Mail Code: 0910, La Jolla, Cal¬ PCT/US20 17/047687 ifornia 92093 (US). COLLADO, Ana Moreno [US/US]; c/o U C San Diego, 9500 Oilman Drive, Mail Code: 0910, (22) International Filing Date: La Jolla, California 92093 (US). 18 August 2017 (18.08.2017) (74) Agent: KONSKI, Antoinette F. et al; FOLEY & LARD- (25) Filing Language: English NER LLP, 3000 K Street, N.W., Suite 600, Washington, (26) Publication Language: English District of Columbia 20007-5 109 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 62/376,855 18 August 2016 (18.08.2016) U S kind of national protection available): AE, AG, AL, AM, 62/415,858 0 1 November 20 16 (01 .11.20 16) U S AO, AT, AU, AZ, BA, BB, BO, BH, BN, BR, BW, BY, BZ, 62/481,589 04 April 20 17 (04 .04 .20 17) U S CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (54) Title: CRISPR-CAS GENOME ENGINEERING VIA A MODULAR AAV DELIVERY SYSTEM sgR A o Fig.
    [Show full text]
  • Thesis + Long Intro
    Engineered discoidin domain from factor VIII binds αvβ3 integrin with antibody-like affinity Thesis by Gene Kym In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2014 (Defended April 23rd, 2014) ii © 2014 Gene Kym All Rights Reserved iii ACKNOWLEDGEMENTS I would like to thank my family for encouraging my studies and keeping me focused on long-term goals. I am thankful for the teachers who educated me, the mentors who trained me, my colleagues in student organizations who showed me the power of teamwork, and my friends for teaching me about the world outside the of academia. I am grateful to Steve, the Mayo Lab, and the individuals at Caltech who made my doctoral years a time of exploration, learning, and fun. iv ABSTRACT Alternative scaffolds are non-antibody proteins that can be engineered to bind new targets. They have found useful niches in the therapeutic space due to their smaller size and the ease with which they can be engineered to be bispecific. We sought a new scaffold that could be used for therapeutic ends and chose the C2 discoidin domain of factor VIII, which is well studied and of human origin. Using yeast surface display, we engineered the C2 domain to bind to αvβ3 integrin with a 16 nM affinity while retaining its thermal stability and monomeric nature. We obtained a crystal structure of the engineered domain at 2.1 Å resolution. We have christened this discoidin domain alternative scaffold the “discobody.” v TABLE OF CONTENTS Acknowledgements .......................................................................................................
    [Show full text]