The Middle Jurassic Summerville Formation, Nothern New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

The Middle Jurassic Summerville Formation, Nothern New Mexico TheMiddle Jurassic Summeruille Formation, northern New Mexico by0. J. Anderson,New Mexico Bureau of Minesand Mineral Resources, Socono, NM 87801; andSpencei G, Luns,New Mexico Museum of NaturalHistory, 1801 Mountain Road NW, Albuquerque, NM87104 Abstract name used in New York state at the time it was introduced in Colorado. Clearly, usage of the name Wanakah outside of New We recommend continued usage of the name Summerville For- York should be discontinued. mation as a stratigraphic unit in the upper San Rafael Group in In northeastem New Mexico, the thinly bedded stratathat overlie northern New Mexico. Our reasonsare as follows. Subsequentto the lower San Rafael Group have been designated as Bell Ranch recognition in 1947of the Entrada Sandstoneand overlying Todilto Formation since 1959. Based on similarity of lithologies, deposi- Formation (the lower San RafaelGroup) in the southern San Juan tional environments, and stratigraphic sequenceand position, it Basin of northwestern New Mexico, field-oriented geologistsgen- is now virtually certain that the Bell Ranch is equivalent to and erally agreed to regard the overlying rocks as the upper part of the westward correlateswith Summerville strata. We thus recommend San Rafael Group. Although fossil control was lacking, the strati- that the name Bell Ranchbe abandonedand the name Summerville graphic sequenceand position were right, and lithologies and fa- retained for upper San Rafael Group strata acrossnorthern New cies were similar. Hence, until 1986, Summerville was used for Mexico. This simplifies the nomenclatureand properly relatesMid- these upper San RafaelGroup strata in all geologic mapping, and dle Jurassicrocks of the High Plains to the Colorado Plateau se- the usage becameentrenched. quence. In 1986, the name Wanakah Formation was introduced for the Other questions regarding correlation and nomenclatureof Mid- strata previously designated and mapped as Summerville in the dle Jurasiic units--Curtis, Pony Expressbeds, Bilk Creek, Bluff, San Juan Basin of New Mexico. The Wanakah type area is in the Cow Springs, Junction Creek, Zuni. and Tidwell-are discussed Ouray dishict of southwestemColorado, where the strataso named as they relate to the Summerville Formation' had been recognizedas equivalent to the Summerville Formation; the usageof Wanakahwas local only. Sinceequivalency with Sum- Introduction merville can be demonstrated, no scientific purpose is served by replacing the more widespread name Summerville with the pro- This report discusses the Summerville Formation and associ- vincial term Wanakah. Of greater significance, however, is that ated strata of the San Rafael Group (Middle jurassic) in northern Summerville has precedence,and that Wanakahwas a stratigraphic New Mexico and adjacent areas (Fig. 1), with Particular respect 108" 106' 104" Moab It o Monlrose ?iver co Nl n,l Beclablto Horse Mesa \t i D/t\ 'lf;"tfitl l Church Hasan ul Rock '\, /i (t $ Basin \\in l J\ Y>,f\l" Zuni . )l aAlbuquerque Pueblof;\ r \\" t\ i# 110' 108" 106' FIGURE1-Index map of the study areashowing outcropsof Middle Jurassicrocks (J, shaded)and someareas of pre-Jurassic(pre-J) and Cretaceous (K) rocks. Nan Merico Geology November 1992 to 1) lithologies, 2) depositionalenvironments, 3) regional cor- and Wanakah in the southwesternpart of the statewith no criteria relations, and 4) the concept of a climatic change marking the given for distinguishing the two. The only early U.S. Geological transition from Middle to Late furassic time. Survey publication to recognizeWanakah was Wood et al. (1953), The Summerville consistsof alternating fine-grained sandstone and curiously this was in northeastern, not northwestern New and gypsiferous siltstone or mudstone that overlies the Curtis Mexico. They were thus the first to recognizethe Wanakah/Sum- Formation and forms the uppermost unit of the San RafaelGroup merville strata on the High Plains. Griggs and Read (1959)pointed in the San RafaelSwell of Utah. To the south, near Moab and La out that since 1953,usage of the name Wanakah had been limited Sal function, the unit thins significantly acrossthe sill or divide to the type area in southwestern Colorado, and they Proceeded that separatedthe marine basin of Curtis deposition to the north- to introduce the name Bell Ranch Formation for strata overlying west from the salina-lakebasin of Todilto deposition to the south- the Todilto in northeastern New Mexico. east. Still further southward near Bluff, Utah, the Summerville More recently Condon and Peterson(1985) and Condon and thickens but retains much of the lithologic characterof the type Huffrnan (1988)"reinstated" the name WanakahFormation, which area, though it is somewhat more sandy. It includes an eolian- they asserted "replaces the name Summerville Formation" sandstone lithosome at Bluff-the bed at Butler Wash-that has throughout northwestern New Mexico. They alleged this change been regarded as a tongue of the Entrada Sandstone.Also at in nomenclafure was necessarybecause of shatigraphic reports Bluff, a prominent sandstoneunit overlies the Summerville, and (O'sullivan, 1980;O'Sullivan and Pierce, 1983)indicating that all is appropriately named Bluff Sandstone.The Bluff Sandstonehas the Summerville Fotmation was cut out by an unconformity in been assigned to both the San RafaelGroup and to the Morrison southeastem Utah. But, in actuality, the Summerville is not cut Formation (Gregory, 1938; Craig, 1955; O'Sullivan, 1980). This out, although when O'Sullivan (1980;1981) realized this he had conflict has arisen because the Bluff contains both eolian and already decided to use the name Wanakah for these strata; this fluvial facies, and becausean unconformity has been perceived is documented by personal correspondence(1986) as well as the at the baseof the Bluff by those who would have it in the Morrison regional cross sections (Fig. 2). In essence,the Summerville is Formation. In this report we treat all eolianites overlying the continuous throughout the area and can be recognized in north- Summerville as essentially contemporaneous dune-field migra- western New Mexico on the basis of lithology, sequence, and tion onto the arid, sandy plain formed during and following the stratigraphic position. Condon and Huffman (1988) also 1) re- northward regressionof the epicontinental Curtis sea.Thus, they duced the Todilto Formation to a member-rank unit at the base all have affinities to and are included in the San Rafael Group. of the newly establishedWanakah Formation, 2) introduced the No major unconformity, and in most instancesno demonstrable name Beclabito Member for the overlying Summerville, and 3) unconformity, exists between the eolianites or mixed eolian-flu- replaced the name Bluff Sandstone with Horse Mesa Member, vial sand bodies and the underlying Summerville. These eolian- which forms the upper part of their Wanakah Formation. They dominated units include strata that have been referred to as Bluff. then establisheda referencesection in New Mexico using member Horse Mesa Member of the Wanakah, Junction Creek Sandstone names not used in the type area, and without benefit of an ac- (Colorado), RecaptureMember of the Morrison, Zuni Sandstone, companying stratigraphic section from the tyPe area. and upper part of Cow Springs Sandstone.Overlying the eolian- ites, or in places typical Summerville, is the fluvially dominated sequence regarded by most as the Morrison Formation. These Statement of problem sediments indicate increasedclastic input during a Late Jurassic The Summerville Formation overlies the Curtis in the type area gradual change to more humid climates. and demonstrably overlies the Todilto in northern New Mexico. Southeastward from Bluff, Arizona and into New Mexico, the In both areas the Summerville has been described as a thinly Summerville is present and continuous acrossthe Four Corners bedded unit consistingof arid coastalplain or sabkha,supratidal platform, the San|uan Basin, and the northeastern portion of the or hypersaline marine, wave-dominated deltaic (McKnight, 1940), state. Throughout much of this areathe Summerville overlies and and lacustrine deposits. These sediments were thus regressive overlaps the Todilto Formation. We discussthe equivalent strata and prograded across facies deposited during a high sealevel in southwestern Colorade-the Wanakah Formation----onlv1) to stand that was synchronousin the Curtis and Todilto depositional first describe in detail a type section, 2) to demonstrate how the basins. In the southern San Juan Basin and adiacentnortheastern Wanakah Formation units, the Pony Expressand the marl beds, Arizona, the Summerville grades southward and southwestward can be correlatedwith the Todilto Formation and the Summerville into an eolian sandpile that has been called the Cow Springs Formation, respectively, and 3) to lend our support to previous Sandstone. workers who have correlated the overlying Junction Creek Sand- Our interpretation of this physical stratigraphic sequenceis that stone westward with the Bluff Sandstone. the onset of regressiveconditions in the Todilto salina basin and the Curtis Seawaywas synchronous and initiated by relative sea- level fall. Ensuing depositional environments in both basinswere Previous sfudies similar, with eolian processesdominating along the southwest An exhaustive review of previous work on furassic rocks of the margin of the integrated basin. It is therefore in the interest of Colorado Plateau area is not undertaken here, as it has recently regional
Recommended publications
  • Geology and Mineral Resources of Sierra Nacimiento and Vicinity, New
    iv Contents ABSTRACT 7 TERTIARY-QUATERNARY 47 INTRODUCTION 7 QUATERNARY 48 LOCATION 7 Bandelier Tuff 48 PHYSIOGRAPHY 9 Surficial deposits 48 PREVIOUS WORK 9 PALEOTECTONIC SETTING 48 ROCKS AND FORMATIONS 9 REGIONAL TECTONIC SETTING 49 PRECAMBRIAN 9 STRUCTURE 49 Northern Nacimiento area 9 NACIMIENTO UPLIFT 49 Southern Nacimiento area 15 Nacimiento fault 51 CAMBRIAN-ORDOVICIAN (?) 20 Pajarito fault 52 MISSISSIPPIAN 20 Synthetic reverse faults 52 Arroyo Peñasco Formation 20 Eastward-trending faults 53 Log Springs Formation 21 Trail Creek fault 53 PENNSYLVANIAN 21 Antithetic reverse faults 53 Osha Canyon Formation 23 Normal faults 53 Sandia Formation 23 Folds 54 Madera Formation 23 SAN JUAN BASIN 55 Paleotectonic interpretation 25 En echelon folds 55 PERMIAN 25 Northeast-trending faults 55 Abo Formation 25 Synclinal bend 56 Yeso Formation 27 Northerly trending normal faults 56 Glorieta Sandstone 30 Antithetic reverse faults 56 Bernal Formation 30 GALLINA-ARCHULETA ARCH 56 TRIASSIC 30 CHAMA BASIN 57 Chinle Formation 30 RIΟ GRANDE RIFT 57 JURASSIC 34 JEMEZ VOLCANIC FIELD 59 Entrada Sandstone 34 TECTONIC EVOLUTION 60 Todilto Formation 34 MINERAL AND ENERGY RESOURCES 63 Morrison Formation 34 COPPER 63 Depositional environments 37 Mineralization 63 CRETACEOUS 37 Origin 67 Dakota Formation 37 AGGREGATE 69 Mancos Shale 39 TRAVERTINE 70 Mesaverde Group 40 GYPSUM 70 Lewis Shale 41 COAL 70 Pictured Cliffs Sandstone 41 ΗUMΑTE 70 Fruitland Formation and Kirtland Shale URANIUM 70 undivided 42 GEOTHERMAL ENERGY 72 TERTIARY 42 OIL AND GAS 72 Ojo Alamo Sandstone
    [Show full text]
  • The Summerville Formation: Evidence for a Sub-Horizontal Stratigraphic Sequence Below the Post-Rift Nu Conformity in the Middleton Place Summerville Seismic Zone
    University of South Carolina Scholar Commons Theses and Dissertations 2017 The ummeS rville Formation: Evidence for a Sub- Horizontal Stratigraphic Sequence below the Post- Rift nconforU mity in the Middleton Place Summerville Seismic Zone Joseph Edward Getz University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Getz, J. E.(2017). The Summerville Formation: Evidence for a Sub-Horizontal Stratigraphic Sequence below the Post-Rift nU conformity in the Middleton Place Summerville Seismic Zone. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/4177 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE SUMMERVILLE FORMATION: EVIDENCE FOR A SUB- HORIZONTAL STRATIGRAPHIC SEQUENCE BELOW THE POST-RIFT UNCONFORMITY IN THE MIDDLETON PLACE SUMMERVILLE SEISMIC ZONE By Joseph Edward Getz Bachelor of Arts University of South Carolina, 2013 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geological Sciences College of Arts and Sciences University of South Carolina 2017 Accepted by: James H. Knapp, Director of Thesis Camelia C. Knapp, Reader Andrew Leier, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Joseph Edward Getz, 2017 All Rights Reserved. ii DEDICATION I would like to dedicate this to my grandparents and my mother, for without their support none of this would have been possible. iii ACKNOWLEDGEMENTS I would like to give a special thanks my major advisor, Dr.
    [Show full text]
  • Stromatolites in the Todilto Formation? Dana S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Stromatolites in the Todilto Formation? Dana S. Ulmer-Scholle, 2005, pp. 380-388 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • The Geology of New Mexico As Understood in 1912: an Essay for the Centennial of New Mexico Statehood Part 2 Barry S
    Celebrating New Mexico's Centennial The geology of New Mexico as understood in 1912: an essay for the centennial of New Mexico statehood Part 2 Barry S. Kues, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, [email protected] Introduction he first part of this contribution, presented in the February Here I first discuss contemporary ideas on two fundamental areas 2012 issue of New Mexico Geology, laid the groundwork for an of geologic thought—the accurate dating of rocks and the move- exploration of what geologists knew or surmised about the ment of continents through time—that were at the beginning of Tgeology of New Mexico as the territory transitioned into statehood paradigm shifts around 1912. Then I explore research trends and in 1912. Part 1 included an overview of the demographic, economic, the developing state of knowledge in stratigraphy and paleontol- social, cultural, and technological attributes of New Mexico and its ogy, two disciplines of geology that were essential in understand- people a century ago, and a discussion of important individuals, ing New Mexico’s rock record (some 84% of New Mexico’s surface institutions, and areas and methods of research—the geologic envi- area is covered by sediments or sedimentary rocks) and which were ronment, so to speak—that existed in the new state at that time. advancing rapidly through the first decade of the 20th century. The geologic time scale and age of rocks The geologic time scale familiar to geologists working in New The USGS did not adopt the Paleocene as the earliest epoch of the Mexico in 1912 was not greatly different from that used by modern Cenozoic until 1939.
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • The Late Jurassic Tithonian, a Greenhouse Phase in the Middle Jurassic–Early Cretaceous ‘Cool’ Mode: Evidence from the Cyclic Adriatic Platform, Croatia
    Sedimentology (2007) 54, 317–337 doi: 10.1111/j.1365-3091.2006.00837.x The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic–Early Cretaceous ‘cool’ mode: evidence from the cyclic Adriatic Platform, Croatia ANTUN HUSINEC* and J. FRED READ *Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, USA (E-mail: [email protected]) ABSTRACT Well-exposed Mesozoic sections of the Bahama-like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform-interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad-oncoid mudstone-wackestone-floatstone and skeletal-peloid wackestone-packstone (shallow lagoon), intraclast-peloid packstone and grainstone (shoal), radial-ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1– 4Æ5 m thick, and dominated by subtidal facies, some of which are capped by very shallow-water grainstone-packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well-developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Kimmeridgian (Late Jurassic) Cold-Water Idoceratids (Ammonoidea) from Southern Coahuila, Northeastern Mexico, Associated with Boreal Bivalves and Belemnites
    REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Kimmeridgian cold-water idoceratids associated with Boreal bivalvesv. 32, núm. and 1, 2015, belemnites p. 11-20 Kimmeridgian (Late Jurassic) cold-water idoceratids (Ammonoidea) from southern Coahuila, northeastern Mexico, associated with Boreal bivalves and belemnites Patrick Zell* and Wolfgang Stinnesbeck Institute for Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany. *[email protected] ABSTRACT et al., 2001; Chumakov et al., 2014) was followed by a cool period during the late Oxfordian-early Kimmeridgian (e.g., Jenkyns et al., Here we present two early Kimmeridgian faunal assemblages 2002; Weissert and Erba, 2004) and a long-term gradual warming composed of the ammonite Idoceras (Idoceras pinonense n. sp. and trend towards the Jurassic-Cretaceous boundary (e.g., Abbink et al., I. inflatum Burckhardt, 1906), Boreal belemnites Cylindroteuthis 2001; Lécuyer et al., 2003; Gröcke et al., 2003; Zakharov et al., 2014). cuspidata Sachs and Nalnjaeva, 1964 and Cylindroteuthis ex. gr. Palynological data suggest that the latest Jurassic was also marked by jacutica Sachs and Nalnjaeva, 1964, as well as the Boreal bivalve Buchia significant fluctuations in paleotemperature and climate (e.g., Abbink concentrica (J. de C. Sowerby, 1827). The assemblages were discovered et al., 2001). in inner- to outer shelf sediments of the lower La Casita Formation Upper Jurassic-Lower Cretaceous marine associations contain- at Puerto Piñones, southern Coahuila, and suggest that some taxa of ing both Tethyan and Boreal elements [e.g. ammonites, belemnites Idoceras inhabited cold-water environments. (Cylindroteuthis) and bivalves (Buchia)], were described from numer- ous localities of the Western Cordillera belt from Alaska to California Key words: La Casita Formation, Kimmeridgian, idoceratid ammonites, (e.g., Jeletzky, 1965), while Boreal (Buchia) and even southern high Boreal bivalves, Boreal belemnites.
    [Show full text]
  • Redbeds of the Upper Entrada Sandstone, Central Utah
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-12-01 Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments Jeffery Michael Valenza Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Valenza, Jeffery Michael, "Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments" (2016). All Theses and Dissertations. 6112. https://scholarsarchive.byu.edu/etd/6112 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments Jeffery Michael Valenza A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Thomas H. Morris, Chair Jani Radebaugh Sam Hudson Scott M. Ritter Department of Geological Sciences Brigham Young University Copyright © 2016 Jeffery Michael Valenza All Rights Reserved ABSTRACT Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments Jeffery Michael Valenza Department of Geological Sciences, BYU Master of Science First distinguished from other sedimentary successions in 1928, the Entrada Sandstone has been the subject of numerous studies.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas
    Lithology and Subdivisions of the, . „ - nj,Jurassic ~ - -' - - - - Stump- - - - JL": •-Formation - - - - - in Southeastern Idaho and dning iGEOLOGlCAL SURVEY PROFESSIONAL PAPER 1035-C Lithology and Subdivisions of the Jurassic Stump Formation in Southeastern Idaho and Adjoining Areas By GEORGE N. PIPIRINGOS and RALPH W. IMLAY UNCONFORMITIES, CORRELATION, AND NOMENCLATURE OF SOME TRIASSIC AND JURASSIC ROCKS, WESTERN INTERIOR UNITED STATES GEOLOGICAL SURVEY PROFESSIONAL PAPER 1035-C Marked rapid lateral changes in lithology, fossil content, and thickness of the Stump Formation are due principally to erosion associated with the Cretaceous (K) and Jurassic (]-4) unconformities UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Pipiringos, George Nicholas, 1918- Lithology and subdivisions of the Jurassic stump formation in southeastern Idaho and adjoining areas. (Unconformities, correlation, and nomenclature of some Triassic and Jurassic rocks, western interior United States) (Geological Survey Professional Paper 1035-C) Bibliography: p. 25 1. Geology, Stratigraphic Jurassic. 2. Geology Idaho. 3. Geology The West. 4. Petrology Idaho. 5. Petrology-The West. I. Imlay, Ralph Willard, 1908-joint author. II. Title. HI. Series. IV. Series: United States Geological Survey Professional Paper 1035-C. QE681.P49 551.7'6 78-1687 For sale by the Superintendent of Documents, U.S. Government
    [Show full text]