A Paleobiogeographical Scenario for the Taxaceae Based on a Revised Fossil Wood Record and Embolism Resistance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EVIDENCE for AUXIN REGULATION of BORDERED-PIT POSITIONING DURING TRACHEID DIFFERENTIATION in LARIX LARICINA By
IAWA Journal, Vol. 16 (3),1995: 289-297 EVIDENCE FOR AUXIN REGULATION OF BORDERED-PIT POSITIONING DURING TRACHEID DIFFERENTIATION IN LARIX LARICINA by Mathew Adam Leitch & Rodney Arthur Savidge 1 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, E3B 6C2, Canada SUMMARY Chips containing cambium intact between xylem and phloem were cut from 8-year-old stem regions of 20-30-year-old dormant Larix laricina in late spring and cultured under controlled conditions for six weeks on a defined medium containing varied concentrations of I-naphthalene acetic acid (NAA, a synthetic auxin). Microscopy revealed that auxin was essential for cambial growth and tracheid differentiation. Low (0.1 mg/l) and high (10.0 mg/l) auxin concentrations were conducive to bordered pits forming in tangential walls, whereas an intermediate concentration (1.0 mg/l) of NAA favoured positioning of pits in radial walls. INTRODUCTION Two decades ago, Barnett and Harris (1975) pointed out that the processes involved in bordered-pit formation were incompletely understood, in particular the way in which the pit site is determined and how adjoining cells form a perfectly symmetrical bor dered-pit pair. Observing that radial walls of enlarging cambial derivatives were vari ably thick and thin, Barnett and Harris (1975) advanced the hypothesis that bordered pit development occurs at sites where the primary wall is thinned through the process of centrifugal displacement of microfibrils. Others, however, considered that a thick ening rather than a thinning of the primary wall was indicative of the site where pit development commenced (FengeI1972; Parham & Baird 1973). -
Pterosaurs Flight in the Age of Dinosaurs Now Open 2 News at the Museum 3
Member Magazine Spring 2014 Vol. 39 No. 2 Pterosaurs Flight in the Age of Dinosaurs now open 2 News at the Museum 3 From the After an unseasonably cold, snowy winter, will work to identify items from your collection, More than 540,000 Marine Fossils the Museum is pleased to offer a number of while also displaying intriguing specimens from President springtime opportunities to awaken the inner the Museum’s own world-renowned collections. Added to Paleontology Collection naturalist in us all. This is the time of year when Of course, fieldwork and collecting have Ellen V. Futter Museum scientists prepare for the summer been hallmarks of the Museum’s work since Collections at a Glance field season as they continue to pursue new the institution’s founding. What has changed, discoveries in their fields. It’s also when Museum however, is technology. With a nod to the many Over nearly 150 years of acquisitions and Members and visitors can learn about their ways that technology is amplifying how scientific fieldwork, the Museum has amassed preeminent own discoveries during the annual Identification investigations are done, this year, ID Day visitors collections that form an irreplaceable record Day in Theodore Roosevelt Memorial Hall. can learn how scientists use digital fabrication of life on Earth. Today, 21st-century tools— Held this year on May 10, Identification Day to aid their research and have a chance to sophisticated imaging techniques, genomic invites visitors to bring their own backyard finds have their own objects scanned and printed on analyses, programs to analyze ever-growing and curios for identification by Museum scientists. -
Cuticle Ultrastructure in Brachyphyllum Garciarum Sp. Nov (Lower Cretaceous, Argentina) Reveals Its Araucarian Affinity
Review of Palaeobotany and Palynology 269 (2019) 104–128 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity Martin A. Carrizo a,⁎, Maiten A. Lafuente Diaz a, Georgina M. Del Fueyo a, Gaëtan Guignard b a División Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET. Av. Ángel Gallardo 470, 1405 Buenos Aires, Argentina b Université Lyon 1, CNRS, UMR 5023 LEHNA, 7-9 rue Raphaël Dubois, Villeurbanne cedex F-69622, Lyon, France article info abstract Article history: A detailed and extensive study of a new species, Brachyphyllum garciarum sp. nov., was carried out through the Received 28 February 2019 analysis of the gross morphology and the cuticle fine details, structure and ultrastructure characters of its leaves Received in revised form 14 June 2019 using light microscope and scanning and transmission electron microscope. The fossils consist of compressions of Accepted 19 June 2019 incomplete twigs with well-preserved cuticle, collected from pelitic levels of the Springhill Formation (lower Hauterivian/lower Barremian) at the Río Correntoso locality in the Santa Cruz province, Argentina. The twigs Keywords: have adpressed scale-like leaves spirally disposed. Leaves have a rhomboidal to pyramidal shape, a width and Foliar cuticle length always in a 1:1 ratio, margin entire and apex mostly rounded. Leaves are amphistomatic with stomatal ap- Ultrastructure paratuses occurring in groups of narrow-wedge shape along the leaf axis. Stomatal apparatuses are close to each Taxonomy other with subsidiary cells in contact; the guard cells are sunken, with marked polar extensions and thickened Brachyphyllum mouth. -
PHYLOGENETIC RELATIONSHIPS of TORREYA (TAXACEAE) INFERRED from SEQUENCES of NUCLEAR RIBOSOMAL DNA ITS REGION Author(S): Jianhua Li, Charles C
PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Author(s): Jianhua Li, Charles C. Davis, Michael J. Donoghue, Susan Kelley and Peter Del Tredici Source: Harvard Papers in Botany, Vol. 6, No. 1 (July 2001), pp. 275-281 Published by: Harvard University Herbaria Stable URL: http://www.jstor.org/stable/41761652 Accessed: 14-06-2016 15:35 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41761652?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Harvard University Herbaria is collaborating with JSTOR to digitize, preserve and extend access to Harvard Papers in Botany This content downloaded from 128.103.224.4 on Tue, 14 Jun 2016 15:35:14 UTC All use subject to http://about.jstor.org/terms PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Jianhua Li,1 Charles C. Davis,2 Michael J. Donoghue,3 Susan Kelley,1 And Peter Del Tredici1 Abstract. Torreya, composed of five to seven species, is distributed disjunctly in eastern Asia and the eastern and western United States. -
Adani Power (Jharkhand) Ltd
Intake Water System Detailed 2X800MW Thermal Power Plant, Godda , Jharkhand Project Project Proponent Adani Power (Jharkhand) Ltd. Report A Detail Project Report on Proposed Water Pipeline Route of 1600 (2 x 800) MW GODDA THERMAL POWER PROJECT GODDA, JHARKHAND ADANI POWER (JHARKHAND) LTD. Village - Motia, Tehsil Godda, District Godda, Jharkhand 1 Intake Water System Detailed 2X800MW Thermal Power Plant, Godda , Jharkhand Project Project Proponent Adani Power (Jharkhand) Ltd. Report Contents 1. GENERAL INFORMATION ................................................................................ 3 1.1 Company Profile ............................................................................................... 4 2. PROJECT BACKGOROUND / REQUIREMENT ............................................... 4 3. LOCATION MAP & KEY PLAN ......................................................................... 5 3.1 Jharkhand State Map ........................................................................................... 5 3.2 Godda Districts ..................................................................................................... 5 3.3 Project Site Water Intake location ................................................................ 6 3.4 Proposed Water Pipe Line Route ...................................................................... 6 4. KEY FEATURES OF THE PROJECT SITE ........................................................ 7 4.1 Site Location Details: .......................................................................................... -
Morphology and Anatomy of Pollen Cones and Pollen in Podocarpus Gnidioides Carrière (Podocarpaceae, Coniferales)
1 2 Bull. CCP 4 (1): 36-48 (6.2015) V.M. Dörken & H. Nimsch Morphology and anatomy of pollen cones and pollen in Podocarpus gnidioides Carrière (Podocarpaceae, Coniferales) Abstract Podocarpus gnidioides is one of the rarest Podocarpus species in the world, and can rarely be found in collections; fertile material especially is not readily available. Until now no studies about its reproductive structures do exist. By chance a 10-years-old individual cultivated as a potted plant in the living collection of the second author produced 2014 pollen cones for the first time. Pollen cones of Podocarpus gnidioides have been investigated with microtome technique and SEM. Despite the isolated systematic position of Podocarpus gnidioides among the other New Caledonian Podocarps, it shows no unique features in morphology and anatomy of its hyposporangiate pollen cones and pollen. Both the pollen cones and the pollen are quite small and belong to the smallest ones among recent Podocarpus-species. The majority of pollen cones are unbranched but also a few branched ones are found, with one or two lateral units each of them developed from different buds, so that the base of each lateral cone-axis is also surrounded by bud scales. This is a great difference to other coniferous taxa with branched pollen cones e.g. Cephalotaxus (Taxaceae), where the whole “inflorescence” is developed from a single bud. It could be shown, that the pollen presentation in the erect pollen cones of Podocarpus gnidioides is secondary. However, further investigations with more specimens collected in the wild will be necessary. Key words: Podocarpaceae, Podocarpus, morphology, pollen, cone 1 Introduction Podocarpus gnidioides is an evergreen New Caledonian shrub, reaching up to 2 m in height (DE LAUBENFELS 1972; FARJON 2010). -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups. -
Paleontologia Em Destaque
Paleontologia em Destaque Boletim Informativo da SBP Ano 34, n° 72, 2019 · ISSN 1807-2550 PALEO, SBPV e SBPI 2018 RELATOS E RESUMOS SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Annie Schmaltz Hsiou (USP/Ribeirão Preto) 1ª Secretária: Dra. Taissa Rodrigues Marques da Silva (UFES) 2º Secretário: Dr. Rodrigo Miloni Santucci (UnB) 1º Tesoureiro: Me. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Átila Augusto Stock da Rosa (UFSM) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (UFRJ) P a l e o n t o l o g i a e m D e s t a q u e Boletim Informativo da Sociedade Brasileira de Paleontologia Ano 34, n° 72, setembro/2019 · ISSN 1807-2550 Web: http://www.sbpbrasil.org/, Editores: Sandro Marcelo Scheffler, Maria Izabel Lima de Manes Agradecimentos: Aos organizadores dos eventos científicos Capa: Palácio do Museu Nacional após a instalação do telhado provisório. Foto: Sandro Scheffler. 1. Paleontologia 2. Paleobiologia 3. Geociências Distribuído sob a Licença de Atribuição Creative Commons. EDITORIAL As reuniões PALEO são encontros regionais chancelados pela Sociedade Brasileira de Paleontologia (SBP) que têm por objetivo a comunhão entre estudantes de graduação e pós- graduação, pesquisadores e interessados na área de Paleontologia. Estes eventos possuem periodicidade anual e ocorrem em várias regiões do Brasil. Iniciadas em 1999, como uma reunião informal da comunidade de paleontólogos, possuem desde então as seguintes distribuições, de acordo com a região de abrangência: Paleo RJ/ES, Paleo MG, Paleo SP, Paleo RS, Paleo PR/SC, Paleo Nordeste e Paleo Norte. -
A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere. -
How Trees Modify Wood Development to Cope with Drought
DOI: 10.1002/ppp3.29 REVIEW Wood and water: How trees modify wood development to cope with drought F. Daniela Rodriguez‐Zaccaro | Andrew Groover US Forest Service, Pacific Southwest Research Station; Department of Plant Societal Impact Statement Biology, University of California Davis, Drought plays a conspicuous role in forest mortality, and is expected to become more Davis, California, USA severe in future climate scenarios. Recent surges in drought-associated forest tree Correspondence mortality have been documented worldwide. For example, recent droughts in Andrew Groover, US Forest Service, Pacific Southwest Research Station; Department of California and Texas killed approximately 129 million and 300 million trees, respec- Plant Biology, University of California Davis, tively. Drought has also induced acute pine tree mortality across east-central China, Davis, CA, USA. Email: [email protected], agroover@ and across extensive areas in southwest China. Understanding the biological pro- ucdavis.edu cesses that enable trees to modify wood development to mitigate the adverse effects Funding information of drought will be crucial for the development of successful strategies for future for- USDA AFRI, Grant/Award Number: 2015- est management and conservation. 67013-22891; National Science Foundation, Grant/Award Number: 1650042; DOE Summary Office of Science, Office of Biological and Drought is a recurrent stress to forests, causing periodic forest mortality with enor- Environmental Research, Grant/Award Number: DE-SC0007183 mous economic and environmental costs. Wood is the water-conducting tissue of tree stems, and trees modify wood development to create anatomical features and hydraulic properties that can mitigate drought stress. This modification of wood de- velopment can be seen in tree rings where not only the amount of wood but also the morphology of the water-conducting cells are modified in response to environmental conditions. -
Agathis Robusta and Agathis Australis Friends Friends
Plants in Focus, December 2016 Agathis robusta and Agathis australis Friends of GeelongBotanic Left: The Qld Kauri Agathis robusta, planted in the Albury BG in 1910, is the largest recorded in the Big Tree Register. Note gardener. [1] Right: The NZ Kauri Agathis australis, named Tane Mahuta (Lord of the Forest), in the Waipoua Forest is the largest known in NZ. Photo: Prof. Chen Hualin, CC BY-SA 4.0, zh.wikipedia.org Kauris (Agathis sp.) are conifers Conifers, along with the other Gymnosperms (Cycads and Ginkgoes), first appeared about 300 Ma (Million years ago) at the end of the Carboniferous when the world’s coal deposits were being laid down with the remains of the spore-producing trees of that period. The early conifers looked like modern Araucaria. These trees spread throughout the world and displaced their predecessors. The age of the seed plants had arrived. The conifers are a hardy lot. They survived the largest mass extinction the earth has known, 252 Ma, at the end of the Permian Period. But more challenges lay ahead. Sometime in the next 50 Myr (Million years) one of Gymnosperms gave rise to the flowering plants, the Angiosperms. By 100 Ma, in the Cretaceous period, Angiosperms were widespread. And so the battle began - and still continues to this day. The flowering plants have many features that make them more successful in many environments, so their take-over of many habitats was complete by about 65 Ma at the end of the age of the dinosaurs. But in the world’s harsh environments the conifers continue to not just survive, but flourish. -
Pakur District, Jharkhand State
भूजल सूचना पुस्तिका पाकु र स्जला, झारखंड Ground Water Information Booklet Pakur District, Jharkhand State के न्द्रीय भमू िजल बोड ड Central Ground water Board Ministry of Water Resources जल संसाधन िंत्रालय (Govt. of India) (भारि सरकार) State Unit Office,Ranchi रा煍य एकक कायाडलय, रााँची Mid-Eastern Region िध्य-पूर्वी क्षेत्र Patna पटना मसिंबर 2013 September 2013 1 भूजल सूचना पुस्तिका पाकु र स्जला, झारखंड Ground Water Information Booklet Pakur District, Jharkhand State Prepared By सुनिल टोꥍपो (वैज्ञानिक ख ) Sunil Toppo (Scientist B) रा煍य एकक कायाडलय, रााँची िध्य-पूर्वी क्षेत्र,पटना State Unit Office, Ranchi Mid Eastern Region, Patna 2 GROUND WATER INFORMATION BOOKLET PAKUR DISTRICT, JHARKHAND STATE CONTENTS Chapter Page No. 1.0 Introduction 1 1.1 Administration 1 1.2 River System 1 1.3 Irrigation practices 2 1.4 Studies/ Activities carried out by CGWB 2 2.0 Rainfall & Climate 2 2.1 Rainfall 2 2.2 Climate 2 3.0 Geomorphology & Soil 3 3.1 Geomorphology 3 3.2 Soils 3 4.0 Ground Water Scenario 4 4.1 Hydrogeology 4 4.1.1 Exploratory wells 4 4.1.2 Depth to water level 5 4.1.3 Seasonal Fluctuation 6 4.1.4 Long term water level trend (2002 – 2011) 6 4.2 Ground Water Resources 6 4.3 Ground Water Quality 7 4.4 Status of Ground Water Development 7 5.0 Ground Water Management Strategy 8 5.1 Ground Water Development 8 5.2 Water Conservation & Artificial Recharge 8 6.0 Ground Water related issues and problems 9 7.0 Awareness & Training Activity 9 7.1 Mass Awareness Programme 9 8.0 Area Notified by CGWA/ SGWA 9 9.0 Recommendations 10 3 List of Tables: Table 1 : Administrative division and population of Pakur district.