Monitoring Bird Populations in New Zealand: a Workshop to Assess the Feasability of a National Bird Population Monitoring Scheme

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Bird Populations in New Zealand: a Workshop to Assess the Feasability of a National Bird Population Monitoring Scheme Monitoring Bird Populations in New Zealand: A Workshop to Assess the Feasability of a National Bird Population Monitoring Scheme Eric B. Spurr Landcare Research Landcare Research Science Series No. 28 Monitoring Bird Populations in New Zealand: A Workshop to Assess the Feasibility of a National Bird Population Monitoring Scheme Eric B. Spurr (compiler) Landcare Research Landcare Research Science Series No. 28 Lincoln, Canterbury, New Zealand 2005 © Landcare Research New Zealand Ltd 2005 Cataloguing in Publication Spurr, E.B. Monitoring Bird Populations in New Zealand: A Workshop to Assess the Feasibility of a National Bird Population Monitoring Scheme / Eric B. Spurr, compiler – Lincoln, N.Z. : Manaaki Whenua Press, 2005. (Landcare Research science series, ISSN 1172-269X; no. 28) ISBN 0-478-09363-2 I. Spurr, E.B. II. Series. UDC 598.2.087.23(931) Edited by Christine Bezar Typesetting Wendy Weller Cover design by Anouk Wanrooy Published by Manaaki Whenua Press, Landcare Research, PO Box 40, Lincoln 8152, New Zealand. 3 Contents Summary ........................................................................................................................................ 4 Introduction.................................................................................................................................... 5 Agenda ........................................................................................................................................... 5 Overview of bird-population monitoring schemes........................................................................... 6 Ornithological Society bird monitoring ......................................................................................... 10 DOC perspective on monitoring bird populations......................................................................... 12 Concepts behind the Natural Heritage Monitoring System ........................................................... 13 Bird monitoring around Hamilton .................................................................................................14 Christchurch City Council bird monitoring .................................................................................... 15 Volunteer bird monitoring ............................................................................................................ 16 Discussion..................................................................................................................................... 16 Recommendations ........................................................................................................................ 17 Acknowledgements....................................................................................................................... 17 References .................................................................................................................................... 17 Appendices ................................................................................................................................... 20 Appendix 1. Discussion paper ............................................................................................ 20 Appendix 2. List of workshop participants ......................................................................... 28 Appendix 3. Artportalen (or Species Gateway) .................................................................. 29 4 Summary A workshop on monitoring bird populations in New Zealand was held at Landcare Research, Lincoln, on 28 June 2004. The objective was to assess the feasibility of establishing a national bird-population monitoring scheme in New Zealand. Organisations invited to the workshop were the Ministry for the Environment (MfE), Department of Conservation (DOC), Canterbury Regional Council (Environment Canterbury), Christchurch City Council (CCC), Ornithological Society (OSNZ), Forest & Bird, Fish & Game, and Landcare Research. Unfortunately, MfE, Environment Canterbury, and Fish & Game were unable to attend. Each organisation was asked what bird population monitoring it currently undertook, what data requirements it had, and whether it would support a nationally coordinated scheme for monitoring bird populations. All organisations (except MfE) currently undertake some form of bird-population monitoring, and several were planning to set up new schemes. There was little or no coordinated planning between organisations, each ‘doing its own thing’. DOC needs to know about trends in native bird populations for biodiversity monitoring (including monitoring response to intervention management). Territorial authorities (such as regional and city councils) need to know bird population trends for planning and environmental management purposes. Although not represented at the workshop, forest industry organisations need to know bird population trends for international forest accreditation purposes, and Fish & Game for management of game bird species. All participants supported the concept of a nationally coordinated scheme for monitoring bird populations. Issues that need to be addressed in setting up a scheme include the purposes of monitoring, survey design, methods of monitoring, access to data, and funding. The workshop participants recommended that a working group be established, including representatives from OSNZ, DOC, Landcare Research, and other interested organisations, to develop a strategy for setting up a scheme for monitoring long-term trends in the abundance of birds in New Zealand, and to recommend methods for its implementation. The participants also recommended that Eric Spurr (Landcare Research) should seek policy support and ‘in principal’ funding agreements between organisations for establishment of the working group. 5 Introduction Birds are conspicuous components of the biota, and sensitive to environmental changes such as the impacts of agricultural practices, pesticide use, industrial development, pollution, and climate change (e.g. Fuller et al. 1995; Campbell et al. 1997; Eeva et al. 1998; Gregory & Baillie 1998; Siriwardena et al. 1998; Crick et al. 1999; Krebs et al. 1999). Many countries overseas have national schemes for monitoring common bird populations, using changes in bird abundance as indicators of environmental changes. The longest running scheme is possibly the Christmas Bird Count in the USA, which started in 1900 (www.audubon.org/bird/cbc/). Other long-running schemes include the Breeding Bird Survey in the UK, which started as the Common Bird Census in 1962 (www.bto.org/bbs/), and the Breeding Bird Survey in North America, which started in 1966 (www.mbr-pwrc.usgs.gov/bbs/). More recently, the European Bird Census Council has been instrumental in establishing national bird-population monitoring schemes in at least 20 European countries (www.ebbc.info/). In 2002, it established the Pan-European Breeding Bird Monitoring Scheme, and used data from these schemes to generate trends in the abundance of common birds across Europe over the past 20 years. In Australia, the Royal Australasian Ornithologists Union (Birds Australia) initiated a nationwide Australian Bird Count in 1989 (Clarke et al. 1999). Birds Australia has also recently completed its second nationwide bird- distribution mapping exercise, and produced a report on the state of Australia’s birds that will feed into the Government’s State of the Environment reporting, as an indicator of national environmental health (Olsen et al. 2003). New Zealand has national schemes for monitoring populations of several bird species, such as some waders (e.g. Maloney 1999), some game birds (e.g. Rodway 2003a,b), and some rare landbirds (e.g. Kiwi Call Monitoring Scheme), but has no schemes for monitoring populations of common landbirds and seabirds. The Ornithological Society of New Zealand conducted national bird-distribution mapping exercises between 1969 and 1979 (Bull et al. 1985) and 1999 and 2004 (http://osnz.org.nz/). However, no information was collected on bird numbers. Landcare Research reviewed bird-population monitoring schemes overseas and in New Zealand (Spurr 2003), and produced a discussion paper on the potential design of such a scheme for New Zealand (Appendix 1). Subsequently, an inter-organisation workshop was convened to consider the feasibility of establishing a national bird-population monitoring scheme in New Zealand. Agenda Representatives from the Ministry for the Environment (MfE), Department of Conservation (DOC), Canterbury Regional Council (Environment Canterbury), Christchurch City Council (CCC), Ornithological Society of New Zealand (OSNZ), Royal Forest and Bird Protection Society (Forest & Bird), Fish and Game New Zealand (Fish & Game), and Landcare Research were invited to attend the workshop. However, representatives from only five of the organisations were able to attend (Appendix 2). MfE, Environment Canterbury, and Fish & Game were unable to send representatives. The workshop started with an overview of bird-population monitoring schemes overseas. This was followed by presentations from the various organisations represented, on what bird-population monitoring they are currently doing or planning to do and, if relevant, what bird-population data they require. The workshop finished with a discussion on whether a national bird-population monitoring scheme was needed and, if so, which scheme(s), and how to get the scheme(s) established. 6 Overview of bird-population monitoring schemes Eric Spurr (Landcare Research) Introduction
Recommended publications
  • Morphology and Anatomy of Pollen Cones and Pollen in Podocarpus Gnidioides Carrière (Podocarpaceae, Coniferales)
    1 2 Bull. CCP 4 (1): 36-48 (6.2015) V.M. Dörken & H. Nimsch Morphology and anatomy of pollen cones and pollen in Podocarpus gnidioides Carrière (Podocarpaceae, Coniferales) Abstract Podocarpus gnidioides is one of the rarest Podocarpus species in the world, and can rarely be found in collections; fertile material especially is not readily available. Until now no studies about its reproductive structures do exist. By chance a 10-years-old individual cultivated as a potted plant in the living collection of the second author produced 2014 pollen cones for the first time. Pollen cones of Podocarpus gnidioides have been investigated with microtome technique and SEM. Despite the isolated systematic position of Podocarpus gnidioides among the other New Caledonian Podocarps, it shows no unique features in morphology and anatomy of its hyposporangiate pollen cones and pollen. Both the pollen cones and the pollen are quite small and belong to the smallest ones among recent Podocarpus-species. The majority of pollen cones are unbranched but also a few branched ones are found, with one or two lateral units each of them developed from different buds, so that the base of each lateral cone-axis is also surrounded by bud scales. This is a great difference to other coniferous taxa with branched pollen cones e.g. Cephalotaxus (Taxaceae), where the whole “inflorescence” is developed from a single bud. It could be shown, that the pollen presentation in the erect pollen cones of Podocarpus gnidioides is secondary. However, further investigations with more specimens collected in the wild will be necessary. Key words: Podocarpaceae, Podocarpus, morphology, pollen, cone 1 Introduction Podocarpus gnidioides is an evergreen New Caledonian shrub, reaching up to 2 m in height (DE LAUBENFELS 1972; FARJON 2010).
    [Show full text]
  • Agathis Robusta and Agathis Australis Friends Friends
    Plants in Focus, December 2016 Agathis robusta and Agathis australis Friends of GeelongBotanic Left: The Qld Kauri Agathis robusta, planted in the Albury BG in 1910, is the largest recorded in the Big Tree Register. Note gardener. [1] Right: The NZ Kauri Agathis australis, named Tane Mahuta (Lord of the Forest), in the Waipoua Forest is the largest known in NZ. Photo: Prof. Chen Hualin, CC BY-SA 4.0, zh.wikipedia.org Kauris (Agathis sp.) are conifers Conifers, along with the other Gymnosperms (Cycads and Ginkgoes), first appeared about 300 Ma (Million years ago) at the end of the Carboniferous when the world’s coal deposits were being laid down with the remains of the spore-producing trees of that period. The early conifers looked like modern Araucaria. These trees spread throughout the world and displaced their predecessors. The age of the seed plants had arrived. The conifers are a hardy lot. They survived the largest mass extinction the earth has known, 252 Ma, at the end of the Permian Period. But more challenges lay ahead. Sometime in the next 50 Myr (Million years) one of Gymnosperms gave rise to the flowering plants, the Angiosperms. By 100 Ma, in the Cretaceous period, Angiosperms were widespread. And so the battle began - and still continues to this day. The flowering plants have many features that make them more successful in many environments, so their take-over of many habitats was complete by about 65 Ma at the end of the age of the dinosaurs. But in the world’s harsh environments the conifers continue to not just survive, but flourish.
    [Show full text]
  • Pollination Drop in Relation to Cone Morphology in Podocarpaceae: a Novel Reproductive Mechanism Author(S): P
    Pollination Drop in Relation to Cone Morphology in Podocarpaceae: A Novel Reproductive Mechanism Author(s): P. B. Tomlinson, J. E. Braggins, J. A. Rattenbury Source: American Journal of Botany, Vol. 78, No. 9 (Sep., 1991), pp. 1289-1303 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2444932 . Accessed: 23/08/2011 15:47 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org AmericanJournal of Botany 78(9): 1289-1303. 1991. POLLINATION DROP IN RELATION TO CONE MORPHOLOGY IN PODOCARPACEAE: A NOVEL REPRODUCTIVE MECHANISM' P. B. TOMLINSON,2'4 J. E. BRAGGINS,3 AND J. A. RATTENBURY3 2HarvardForest, Petersham, Massachusetts 01366; and 3Departmentof Botany, University of Auckland, Auckland, New Zealand Observationof ovulatecones at thetime of pollinationin the southernconiferous family Podocarpaceaedemonstrates a distinctivemethod of pollencapture, involving an extended pollinationdrop. Ovules in all generaof the family are orthotropousand singlewithin the axil of each fertilebract. In Microstrobusand Phyllocladusovules are-erect (i.e., the micropyle directedaway from the cone axis) and are notassociated with an ovule-supportingstructure (epimatium).Pollen in thesetwo genera must land directly on thepollination drop in theway usualfor gymnosperms, as observed in Phyllocladus.In all othergenera, the ovule is inverted (i.e., the micropyleis directedtoward the cone axis) and supportedby a specializedovule- supportingstructure (epimatium).
    [Show full text]
  • Ecology and Distribution of the Malesian Podocarps Neal J
    4 Ecology and Distribution of the Malesian Podocarps Neal J. Enright and Tanguy Jaffré ABSTRACT. Podocarp species and genus richness is higher in the Malesian region than anywhere else on earth, with maximum genus richness in New Guinea and New Caledo- nia and maximum species richness in New Guinea and Borneo. Members of the Podo- carpaceae occur across the whole geographic and altitudinal range occupied by forests and shrublands in the region. There is a strong tendency for podocarp dominance of vegetation to be restricted either to high- altitude sites close to the limit of tree growth or to other sites that might restrict plant growth in terms of water relations and nutri- ent supply (e.g., skeletal soils on steep slopes and ridges, heath forests, ultramafic parent material). Although some species are widespread in lowland forests, they are generally present at very low density, raising questions concerning their regeneration ecology and competitive ability relative to co- occurring angiosperm tree species. A number of species in the region are narrowly distributed, being restricted to single islands or mountain tops, and are of conservation concern. Our current understanding of the distribution and ecology of Malesian podocarps is reviewed in this chapter, and areas for further research are identified. INTRODUCTION The Malesian region has the highest diversity of southern conifers (i.e., Podocarpaceae and Araucariaceae) in the world (Enright and Hill, 1995). It is a large and heterogeneous area, circumscribing tropical and subtropical lowland to montane forest (and some shrubland) assemblages, extending from Tonga in Neal J. Enright, School of Environmental Science, the east to India in the west and from the subtropical forests of eastern Australia Murdoch University, Murdoch, Western Austra- in the south to Taiwan and Nepal in the north (Figure 4.1).
    [Show full text]
  • Morphology and Identification of the World's Conifer Genera
    Morphology and identification of the world’s conifer genera VEIT MARTIN DÖRKEN & HUBERTUS NIMSCH Kessel Publishing House www.forstbuch.de, www.forestrybooks.com Authors Dr. rer. nat. Veit Martin Dörken Universität Konstanz Fachbereich Biologie Universitätsstraße 10 78457 Konstanz Germany Dipl.-Ing. Hubertus Nimsch Waldarboretum Freiburg-Günterstal St. Ulrich 31 79283 Bollschweil Germany Copyright 2019 Verlag Kessel Eifelweg 37 53424 Remagen-Oberwinter Tel.: 02228-493 Fax: 03212-1024877 E-Mail: [email protected] Internet: www.forstbuch.de, www.forestrybooks.com Druck: Business-Copy Sieber, Kaltenengers www.business-copy.com ISBN: 978-3-945941-53-9 3 Acknowledgements We thank the following Botanic Gardens, Institu- Kew (UK) and all visited Botanical Gardens and tions and private persons for generous provision Botanical Collections which gave us free ac- of research material: Arboretum Tervuren (Bel- cess to their collections. We are also grateful to gium), Botanic Garden Atlanta (USA), Botanic Keith Rushforth (Ashill, Collumpton, Devon, UK) Garden and Botanic Museum Berlin (Germany), and to Paula Rudall (Royal Botanic Gardens Botanic Garden of the Ruhr-University Bochum Kew, Richmond, UK) for their helpful advice (Germany), Botanic Garden Bonn (Germany), and critical comments on an earlier version of Botanic Garden of the Eberhard Karls Univer- the manuscript and and Robert F. Parsons (La sity Tübingen (Germany), Botanic Garden of the Trobe University, Australia) for his great support University of Konstanz (Germany), Botanic Gar- in
    [Show full text]
  • On Ratites and Their Interactions with Plants*
    Revista Chilena de Historia Natural 64: 85-118, 1991 On ratites and their interactions with plants* Las rátidas y su interacci6n con las plantas JAMES C. NOBLE CSIRO, Division of Wildlife and Ecology, National Rangelands Program, P.O. Box 84, Lyneham, A.C.T. 2602, Australia RESUMEN Se revisan las historias de los fosiles, patrones de distribucion y preferencias de medio ambiente natural-nabitat, tanto de miembros extintos como sobrevivientes de las ratidas. Se pone especial enfasis en aquellas caracterlsticas f{sicas y anatomicas de las rátidas que tienen aparente significacion desde el punto de vista de Ia dinamica vegetal, especialmente aquellos aspectos relacionados con Ia germinacion de las semillas y establecimiento de los brotes. Aparte de los kiwis de Nueva Zelanda (Apteryx spp.), Ia caracteristica principal que distingue a las ratidas de otras aves es su gran tamafio. En tanto que las consecuencias evolutivas del gigantismo han resultado en Ia extincion comparativamente reciente de algunas especies, tales como, las moas (las Dinornidas y Emeidas) de Nueva Zelanda y los pajaros elefantes (Aeporní- tidas) de Madagascar, el gran tamaño de las rátidas contemporáneas les confiere Ia capacidad de ingerior considerables cantidades de alimentos, como as{ tambien {temes particulares como frutas y piedras demasiado grandes para otras aves, sin sufrir ningún menoscabo en el vuelo. Muchos de estos alimentos vegetates, especialmente frutas como las de los Lauranceae, pueden ser altamente nutritivos, pero las ratidas son omnivoras y pueden utilizar una gama de alternativas cuando es necesario. Es aún incierto si Ia seleccion de alimentos está relaeionada directamente con Ia recompensa nutritiva; sin embargo, Ia estacion de reproduccion del casuario australiano (Casuarius casuarius johnsonii) está estrecha- mente ligada al per{odo de máxima produccion frutal de los árboles y arbustos en sus habitat de selvas tropicales lluviosas.
    [Show full text]
  • New Zealand Ecology LJ Keegan
    New Zealand ecology By Linda Jane Keegan In order to understand New Zealand’s ecology it is useful to have an understanding of its natural history. New Zealand’s present ecological state resulted from its Gondwanan origins, geological and climatic history, isolation from other land masses, and the relatively recent arrival of humans. These factors have contributed to species’ immigration, extinctions, and speciation. Considered a biodiversity hotspot, New Zealand hosts around 56,500 taxa, of which 70% are terrestrial (including fresh water species, which comprise only 9% of the total) and 30% marine. As a consequence of its past connection to Gondwana, New Zealand shares biotic relationships with other land masses of the Gondwanan supercontinent, including South America, Australia, New Guinea and New Caledonia. The New Zealand land mass separated when mammals and flowering plants started to flourish, although why herbivorous and predatory mammals did not reach or establish in New Zealand is complicated and uncertain. Nonetheless, their absence significantly affected the evolutionary outcomes of species there. New Zealand’s links to Gondwana helped shape its present biota but other geological and climatic events also influenced these communities. The New Zealand Geosyncline (a large oceanic depression) and various orogenies (mountain-building episodes) affected which species could reach or survive in New Zealand, and had an impact on speciation. For example, the tectonic movement which forced land upwards forming the Southern Alps (the Kaikoura Orogeny), created habitat at higher altitudes into which alpine flora could radiate. In fact, they could only do so following prolonged exposure to an alpine zone. Other opportunities for speciation were the result of changes in sea level, existence of islands, glacial and interglacial periods, climate, and the emergence or loss of habitat.
    [Show full text]
  • Phylogenetics of Native Conifer Species in Vietnam Based on Two Chloroplast Gene Regions Rbcl and Matk
    Original Paper Czech Journal of Genetics and Plant Breeding, 57, 2021 (2): 58–66 https://doi.org/10.17221/88/2020-CJGPB Phylogenetics of native conifer species in Vietnam based on two chloroplast gene regions rbcL and matK Mai Phuong Pham1, Viet Ha Tran2, Dinh Duy Vu1,3*, Quoc Khanh Nguyen1, Syed Noor Muhammad Shah4* 1Vietnam-Russia Tropical Centre, Hanoi, Vietnam 2College of Forestry, Vietnam National University of Forestry, Hanoi, Vietnam 3Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam 4Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail Khan, Pakistan *Corresponding authors: [email protected]; [email protected] Mai Phuong Pham and Viet Ha Tran contributed equally to this work and should be regarded as co-first authors. Citation: Pham M.P., Tran V.H., Vu D.D., Nguyen Q.K., Shah S.N.M. (2021): Phylogenetics of native conifer species in Vietnam based on two chloroplast gene regions rbcL and matK. Czech J. Genet. Plant Breed., 57: 58−66. Abstract: We used two chloroplast gene regions (matK and rbcL) as a tool for the identification of 33 local conifer spe- cies. All 136 sequences, 101 newly generated (14 species for gene matK; 16 species for gene rbcL) and 35 retrieved from the GenBank, were used in the analysis. The highest genetic distance (matK region) was recorded between the species in Cupressaceae with an average of 5% (0.1–8.5), Podocarpaceae with an average of 6% (0–8.5), Taxaceae with an average of 5% (0.2–0.5) and Pinaceae with an average of 20.4% (0.8–54.1).
    [Show full text]
  • 10 a Functional Analysis of Podocarp Ecology Timothy J
    10 A Functional Analysis of Podocarp Ecology Timothy J. Brodribb ABSTRACT. Viewed in terms of species diversity, the Southern Hemisphere conifer fam- ily Podocarpaceae is equivalent to its northern sister the Pinaceae. However, despite their similar age and common heritage these two families diverge strongly in morphology, physiology, and ecology. Both Pinaceae and Podocarpaceae are successful families of vas- cular plants, and in both cases this success has been built upon contrasting and rather canalized adaptive differentiation. Pinaceae thrive in virtually all Northern Hemisphere forest environments where freezing limits the success of evergreen angiosperm competi- tors. In contrast, the Podocarpaceae are most successful in the tropics, where they com- pete directly with broad- leaved angiosperms, usually in montane rainforest. This chapter discusses some of the key adaptations that have enabled tropical Podocarpaceae to re- main competitive during the rise of angiosperms. I also examine the hydraulic “Achilles heel” that limits all members of the Podocarpaceae to a mesic rainfall envelope. Adaptation TO LIFE IN TROPICAL FORESTS Large, bilaterally flattened leaves are more efficient at harvesting light than spirally arranged needle or scale leaves (Leverenz, 1995; Pickup et al., 2005). This general rule is highly significant when considering the outcome of conifer – angiosperm competition in the period since angiosperm diversification in the Late Cretaceous. With the exception of Gnetum, gymnosperms appear to be incapable of producing large laminate leaves, and as such, they cannot benefit from the economic advantages of efficient light harvesting and minimal self- shading that broad leaves offer (Falster and Westoby, 2003). The overwhelm- ing dominance of broad- leaved taxa in most productive regions of the tropics Timothy J.
    [Show full text]
  • Vascular Plant Families of the United States (With Common Names and Numerical Summary)
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 2-21-2020 Vascular Plant Families of the United States (with Common Names and Numerical Summary) James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plant Families of the United States (with Common Names and Numerical Summary)" (2020). Botanical Studies. 97. https://digitalcommons.humboldt.edu/botany_jps/97 This Flora of the United States and North America is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. VASCULAR PLANT FAMILIES OF THE UNITED STATES (WITH COMMON NAMES AND NUMERICAL SUMMARY) James P. Smith Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 21 February 2020 There are four groups of vascular plants — lycophytes (often called fern allies), ferns, gymnosperms, and flowering plants (angiosperms). This inventory includes native plants, along with introduced weeds, crops, and ornamentals that are naturalized and that maintain themselves without our assistance. I have also included plants that have not been collected in recent years and may well be extinct or extirpated. The geographic coverage is the conterminous or contiguous United States, the region known more informally as the “lower 48.” Alaska, Hawai’i, Puerto Rico, and the U.
    [Show full text]
  • Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review
    plants Review Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review Claudio Frezza 1,* , Alessandro Venditti 2 , Daniela De Vita 1, Chiara Toniolo 1, Marco Franceschin 2, Antonio Ventrone 1, Lamberto Tomassini 1 , Sebastiano Foddai 1, Marcella Guiso 2, Marcello Nicoletti 1, Armandodoriano Bianco 2 and Mauro Serafini 1 1 Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (D.D.V.); [email protected] (C.T.); [email protected] (A.V.); [email protected] (L.T.); [email protected] (S.F.); [email protected] (M.N.); mauro.serafi[email protected] (M.S.) 2 Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (A.V.); [email protected] (M.F.); [email protected] (M.G.); [email protected] (A.B.) * Correspondence: [email protected] Received: 22 June 2020; Accepted: 9 July 2020; Published: 14 July 2020 Abstract: In this review article, the phytochemistry of the species belonging to the Araucariaceae family is explored. Among these, in particular, it is given a wide overview on the phytochemical profile of Wollemia genus, for the first time. In addition to this, the ethnopharmacology and the general biological activities associated to the Araucariaceae species are singularly described. Lastly, the chemotaxonomy at the genus and family levels is described and detailed. Keywords: Araucariaceae; phytochemistry; ethnopharmacology; chemotaxonomy; biological activities 1. Introduction Araucariaceae Henkel and W. Hochstetter is a family of coniferous trees, classified under the order Pinales, the class Pinopsoda, the division Pinophyta, and the Clade Tracheophytes [1].
    [Show full text]
  • Characteristics of Green Rimu Fruit That Might Trigger Breeding in Kakapo
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Characteristics of green rimu fruit that might trigger breeding in kakapo A thesis presented in partial fulfilment of the requirements for the degree of Masters in Zoology at Massey University, Turitea Campus, Palmerston North New Zealand Yvette Heather Cottam 2010 ABSTRACT Species living in unpredictable habitats cannot prepare for a regular reproductive year, and must reproduce when conditions are favourable. The timing of reproduction of the seed predators involves anticipating an abundant food supply by tracking cues or triggers which initiate reproduction. These cues are poorly understood. The most supported theory is that a cue or cues is the size or abundance of the developing fruit crop, and possibly involves nutritional compounds in the crop. The rimu (Dacrydium cupressinum) is a masting podocarp tree strongly linked to reproduction in kakapo (Strigops habroptilus). On Codfish Island kakapo only breed in rimu mast years and nesting is timed so chicks hatch when the rimu fruit crop (the sole food source for chicks) is due to ripen. This thesis investigates the theory that some component in unripe rimu fruit is involved in timing of nesting in kakapo. I characterised seasonal changes (over one year) in nutritional components (gross nutrients), polyphenolic compounds and other potential target polyphenolic substances with possible hormonal activity, including isoflavones and antioxidants, during rimu fruit development. A number of the compounds found in rimu fruit are known to affect reproduction in other species and could be potential triggers for reproduction in kakapo.
    [Show full text]