31494 I.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Charts for Native to the West Booklet
26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• •• -
Identification De Polyphénols, Évaluation De Leur Activité Antioxydante Et Étude De Leurs Propriétés Biologiques François Muanda Nsemi
Identification de polyphénols, évaluation de leur activité antioxydante et étude de leurs propriétés biologiques François Muanda Nsemi To cite this version: François Muanda Nsemi. Identification de polyphénols, évaluation de leur activité antioxydante et étude de leurs propriétés biologiques. Biologie végétale. Université Paul Verlaine - Metz, 2010. Français. NNT : 2010METZ011S. tel-01752680 HAL Id: tel-01752680 https://hal.univ-lorraine.fr/tel-01752680 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de -
Agathis Australis
Mike Marden and Chris Phillips [email protected] KKauriauri Agathis australis INTRODUCTION AND METHODS Reasons for planting native trees include the enhancement of plant and animal biodiversity for conservation, establishment of a native cover on erosion-prone sites, improvement of water quality by revegetation of riparian areas and management for production of high quality timber. Signifi cant areas of the New Zealand landscape, both urban and rural, are being re-vegetated using native species. Many such plantings are on open sites where the aim is to quickly achieve canopy closure and often includes the planting of a mixture of shrubs and tree species concurrently. Previously, data have been presented showing the potential above- and below-ground growth performance of eleven native plant species considered typical early colonisers of bare ground, particularly in riparian areas (http://icm.landcareresearch.co.nz/research/land/Trial1results.asp). In this current series of posters we present data on the growth performance of six native conifer (kauri, rimu, totara, matai, miro, kahikatea) and two broadleaved hardwood (puriri, titoki) species most likely to succeed the early colonising species to become a major component in mature stands of indigenous forest (http://icm.landcareresearch.co.nz/research/land/Trial2.asp). Data on the potential above- and below-ground early growth performance of colonising shrubby species together with that of conifer and broadleaved species will help land managers and community groups involved in re-vegetation projects in deciding the plant spacing and species mix most appropriate for the scale of planting and best suited to site conditions. Data are from a trial established in 2006 to assess the relative growth performance of native conifer and broadleaved hardwood tree species. -
Download a Nomination Form from the NZPCN Website Here
TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 156 Message from the President November 2016 Kia ora koutou, Deadline for next issue: Aft er the last AGM we have had a change in the make-up of the NZPCN council. I’d Thursday 15 December 2016 like to introduce myself as newly elected president and Matt Ward as newly elected SUBMIT AN ARTICLE Secretary. Both Matt and I have been a part of the NZPCN council for several years TO THE NEWSLETTER and are looking forward to continuing in our new roles. Sarah Beadel has stepped Contributions are welcome aside aft er three years as president, but remains on the council. I’d like to thank Sarah to the newsletter at any time. The closing date for for her excellent leadership over the last three years; I’m looking forward to working articles for each issue is with the rest of the council over the next year. Our focus in the short term is on approximately the 15th of fi nalising the Network’s strategy for the next fi ve years, investigating a new ‘back end’ each month. for our website and organising the next NZPCN conference in late 2017. Articles may be edited and used in the newsletter and/ Our current council consists of: or on the website news page. President: Rewi Elliot The Network will publish almost any article about Secretary: Matt Ward plants and plant conservation Treasurer: Nicky Oliver-Smith with a particular focus on the General member: John Barkla plant life of New Zealand and Oceania. -
Vitex Lucens)
03 Backyard Planting Programme Conservation Volunteers NZ Pūriri (Vitex lucens) Pūriri is a large, long-lived tree with some of the Size biggest flowers of any New Zealand tree and aided 20m tall in pollination by our birds. Large, pink flowers followed by marble sized, bright Distribution & Habitat red fruits drape the tree for most of the year. The Found from the North Cape to Waikato. You will fruiting period normally commences early winter usually see them in paddocks where they have and extends into mid-spring. been left to shade cattle. Occurs mostly in coastal and lowland forests. Fast growing tree Pūriri have the incredible ability to resprout and that will do well in most habitats. continue growing from where they have fallen over or supposedly senesced (died). Species it attracts You will see this beautiful gnarled tree studded Fruits are loved by Kererū, who are the only with the Pepetuna (Pūriri moth) burrows that are birds able to swallow the berries whole and predated on by Ruru (Morepork). With both species distribute them. Flowers also provide nectar being nocturnal you may need a torch to see for Tūī, Korimako (Bellbird), Tauhou (Silvereye). this hive of activity. Medicinal Properties Pūriri, being a hardwood with little buoyancy, was used in the construction of hīnaki (eel pots) along Leaves are boiled down to treat back ache. with many a fence post still in the ground today. Where to plant in your garden: Pūriri is a large tree with a wide root system so is best suited Pepe-tuna nunui Large pepe-tuna (pūriri moth) to large gardens. -
NOTES on AGATHIS AUSTRALIS. by C
NOTES ON AGATHIS AUSTRALIS. By C. T. SANDO. Introduction.—Much has been published about our kauri (Agathis australis) and it is now generally recognised as one of the finest coniferous trees of the world. The New Zealand species is one of a genus of ten—the most important being— A. Palmerstoni ... (Queensland) A. microstachya ... (Queensland) A. robusta ... (Queensland and Philippine Islands) A. vitiensis * ... (Fiji) A. alba ... (Malaya, Sumatra, Java, Celebes, Borneo, and Philippine Islands) A. lanceolata ... (New Caledonia) A. macrophylla ... (Solomon Islands) The value of Agathis australis was first recognised before 1800 by which time a considerable trade in kauri spars had sprung up between Australia and New Zealand. Later, naval-store ships were sent out from England for cargoes and from that time on kauri has increased in value. Up till a short time ago it was used for building and interior furnishing, but now the limited supplies demand a price far too high for these purposes so that its present uses have been confined to carriage building, cabinet-making, and general joinery, vats, tubs, and other special purposes. Wanton waste has so depleted out kauri areas that now, more than ever it is forced upon us, the necessity of making very serious attempts at conservation of the remaining supplies and propagation of this tree for scenic purposes, and, if economic conditions warrant it, for timber production. Geographical, Climatic, and Edaphic Range.—Kauri occurs in the northern parts of the North Island except in the extreme northern peninsula. It is found from Ahipara and Mangonui in the north as far south as the Bay of Plenty on the East Coast and Kawhia Harbour on the west, i.e. -
A Basis for the Management of New Zealand Kauri (Agathis Australis (D
A BASIS FOR THE MANAGEMENT OF NEW ZEALAND KAURI (AGATHIS AUSTRALIS (D. DON) LINDL.) FOREST J. C. HALKETT* ABSTRACT The area of primeval kauri (Agathis australis (D.Don) Lindl.) forest has been substantially reduced. There now exists a significant second-crop resource. Kauri forests are important ecosystems which are valuable for timber production plus non-wood values and benefits. The management potential of kauri has been indicated by research. This and other considerations resulted in a revised kauri management policy being introduced in 1973. Sustained yield management is prescribed for timber production zones. This necessitates a knowledge of the ecological character istics and an appreciation of growth dynamics, stand structures and extent of the resource. The productivity of second-crop stands suggests that there exists the opportunity for increasing the present cut. , ^fil To preserve its biological features areas of kauri forests have been set aside in scientific reserves. Re-afforestation is primarily aimed at rehabilitating disturbed forest and silvicultural tending is designed to promote the growth of regenerating areas. Harvesting in mature stands has been suspended and for environmental, engineering and management reasons helicopter logging is practised in second-crop stands. The principal function of kauri management will continue to be to protect intrinsic forest values. However, it will also prescribe activities aimed at producing a small perpetual yield of timber. INTRODUCTION New Zealand kauri {Agathis australis (D.Don) Lindl.) is the southernmost species of the genus. The other 12 species of Agathis are concentrated in the tropics (Whitmore, 1979; Bowen and Whitmore, 1980). Before the colonisation of New Zealand by Europeans, in the early 19 th century, there was in the vicinity of 1.5 million hec- *New Zealand Forest Service, P.O. -
Tri-Trophic Interactions of a Predator- Parasite-Host Assemblage in New Zealand
Tri-trophic interactions of a predator- parasite-host assemblage in New Zealand BY KIRSTY JANE YULE A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington (2016) 1 2 This thesis was conducted under the supervision of Associate Professor Kevin Burns (Primary Supervisor) Victoria University of Wellington, New Zealand 3 4 Abstract Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved. In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density- dependent competition as infrapopulation size had no effect on long-term larval growth. Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. -
Environment Court Env-2016-Akl- at Auckland
BEFORE THE ENVIRONMENT COURT ENV-2016-AKL- AT AUCKLAND IN THE MATTER of the Resource Management Act 1991 (“the Act”) AND IN THE MATTER of an appeal under clause 14 of the Schedule 1 of the Act of Decisions on the Proposed Thames Coromandel District Plan and Variation 1 BETWEEN Northern Land Property Limited Appellant AND Thames Coromandel District Council Respondent NOTICE OF APPEAL T L Hovell/P R H Mason PO Box 1585 Shortland Street AUCKLAND 1140 Solicitor on the record Tama Hovell [email protected] (09)3040424 Contact Solicitor Phoebe Mason [email protected] (09)3040425 2 TO: The Registrar Environment Court AUCKLAND 1. Northern Land Property Limited appeals a decision of Thames Coromandel District Council on the following plan and variation: Proposed Thames Coromandel District Plan (“Proposed Plan”) and Variation 1 – Natural Character (“Variation 1”). 2. Northern Land Property Limited made submissions and further submissions as follows: (a) Original submission on the Proposed Plan on 14 March 2014 and further submissions on 16 June 2014; and (b) Original submission on Variation 1 on 4 December 2015 and further submissions on 28 January 2016. 3. Northern Land Property Limited is not a trade competitor for the purposes of section 308D of the Act. 4. Northern Land Property Limited received notice of the decision on 29 April 2016. 5. The decision was made by the Thames Coromandel District Council. 6. The parts of the decision that Northern Land Property Limited is appealing are the decisions on: (a) Section 3 – Definitions; (b) Section 7 – Coastal Environment; (c) Section 9 – Outstanding Natural Features and Landscapes; (d) Section 27 – Structure Plans; (e) Section 32 – Outstanding Natural Features and Landscapes Overlay; 3 (f) Section 32A – Natural Character of the Coastal Environment; and (g) Section 38 – Subdivision; (h) Section 56 – Rural Area and Zone; of the Proposed Plan and Variation. -
Consequences of Dams on Dry Seasonal Forests Vagner S Vale1*, I Schiavini1, J a Prado-Júnior1, Ana P Oliveira and André E Gusson2
Vale et al. Revista Chilena de Historia Natural (2015) 88:13 DOI 10.1186/s40693-015-0043-5 RESEARCH Open Access Rapid changes in tree composition and biodiversity: consequences of dams on dry seasonal forests Vagner S Vale1*, I Schiavini1, J A Prado-júnior1, Ana P Oliveira and André E Gusson2 Abstract Background: Plants in a seasonal environment that become close to the artificial lake after dams construction may have enhanced growth or die due to the new conditions. Changes in mortality or growth rates lead to changes in community diversity, and we do not know if the community functions will change; our main hypothesis was that a few years after impoundment, species richness and diversity will increase because the increased supply of water would favor the establishment of water-associated species. Therefore, we evaluated the consequences of proximity of three dry seasonal forests to the water table after damming, with a dynamic evaluation of the species studied to understand changes in diversity in these areas. We sampled 60 plots of 20×10 m in each forest and measured all trees with a diameter equal to or greater than 4.77 cm before damming and 2 and 4 years after damming. We calculated dynamic rates and compared species changes during these periods. We also compared diversity and richness using Shannon index and rarefaction curves. Results: Many species had high dynamic rates and many trees of specialists of dry forests died; conversely, others had high growth rates. Some typical species of riparian forests were found only after damming, also enhancing forest richness in deciduous forests. -
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number -
The Restoration of Tropical Seed Dispersal Networks Fernanda Ribeiro Da Silva1,2,3, Daniel Montoya4, Rafael Furtado5, Jane Memmott4, Marco A
RESEARCH ARTICLE The restoration of tropical seed dispersal networks Fernanda Ribeiro da Silva1,2,3, Daniel Montoya4, Rafael Furtado5, Jane Memmott4, Marco A. Pizo5, Ricardo R. Rodrigues2 Human activities have led to the loss of habitats and biodiversity in the Atlantic Rain Forest in Brazil. Ecological restoration aims to rebuild this biome and should include not only the reinstatement of species but also the reestablishment of complex ecological interactions and the ecological functions that they provide. One such function is seed dispersal, which is provided by the interactions between animal frugivores and plants. We studied seed dispersal networks in 3 different tropical forest sites restored 15, 25, and 57 years ago; temporal scales rarely observed in restoration studies. We investigated changes in network structure (nestedness, modularity, and network specialization) in these communities over restoration time. Although network size and the number of interactions increased with time since restoration, the networks were composed of generalist birds, and the large frugivores remained absent. Contrary to our expectations though, species richness was highest in the 25-year-old site, maybe due to the higher number of species used in the planting. Nestedness values were low in all 3 networks, but the highest nestedness was observed in the intermediate-aged site. However, the oldest network was significantly modular and showed higher complementary specialization. These results suggest that 57 years after restoration, the complexity of mutualistic interactions in seed dispersal networks has increased, this enhancing ecosystem function in the Atlantic forest. Key words: Atlantic forest, birds, ecosystem function, network structure, restoration age less than 12% of the original forest remains distributed Implications for Practice mostly in small and isolated fragments (Ribeiro et al.