Epilogue Learning to Read the Book of Life: an Interdisciplinary Process

Total Page:16

File Type:pdf, Size:1020Kb

Epilogue Learning to Read the Book of Life: an Interdisciplinary Process _____________ Epilogue _____________ Learning to read the Book of Life: An interdisciplinary process The main message that we have attempted to transfer to our readers is that unlike most other branches of science, astrobiology is an interdisciplinary activity that crosses over the frontiers of science and the humanities. We have not intended to teach the readers how they can read the Book of Life, but rather how The Book of Life itself has began to be intelligible from the point of view of science since early in the 20th century. Although efforts to come to grips with the phenomenon of life have been part of human culture since Ancient Greece, in the Introduction we have shown that biology was not ready to lend us a hand, not even after the most significant and relevant scientific revolution that took place with the coming of Darwinism towards the middle of the 19th century. Darwin himself was of the opinion that time was not ripe for such an undertaking during his lifetime (cf., “Introduction”, p. 7). The emergence of the science of astrobiology was a gradual process, in which a stunning range of scientific disciplines took part. Some aspects of this vast scientific discipline are still to be fully comprehended. We would like to take a stroll with the readers along the pathway that we have followed together. In Chapters 1 and 2 astrophysics and cosmology, together with organic chemistry, showed us the way to the fundamental enquiry of how life has emerged in the cosmos. This was the main topic of what we have called the “First Part of the Book of Life” (cf., pp. 29-100). In these pages we have seen how Alexander Oparin, Stanley Miller, Joan Oro, Cyril Ponnamperuma, Sidney Fox brought to our attention the chemical evolution of the main ingredients of living microorganisms that later would evolve from bacteria to humans. But even though they may be considered pioneers of astrobiology, they were not working in isolation. We have attempted to show the reader that it was not just the card-carrying organic chemists the scientists that were creating the foundations of astrobiology. Geochronologists, such as Stephen Moorbath, together with geochemists, such as Manfred Schildowski and Gustaf Arrhenius, and micropaleontologists, such as J. William Schopf were making independent preliminary, but significant steps in the right direction. Already in Chapter 3 we discussed the early, as well as the current steps in planetary science, especially the “conquest of the Moon” that had caught for a brief period the imagination of the layman who was witnessing a race between two J. Chela-Flores, The Science of Astrobiology: A Personal View on Learning to Read the Book of Life, 281 Cellular Origin, Life in Extreme Habitats and Astrobiology 20, DOI 10.1007/978-94-007-1627-8, © Springer Science+Business Media B.V. 2011 282 THE SCIENCE OF ASTROBIOLOGY superpowers. Like Camelot it was an inspiring, but alas too brief a moment. We had to wait forty years—a biblical time—to return to the nearest body of the Solar System. A search for biomarkers has been initiated with the hope that they could orient us in the search for our own origin. We have to search for samples not just in the very limited area on the visible side of the Moon probed by the Apollo missions, but also in the polar region and on the far side of the Moon. There was an intense traffic of meteorites in the heavy bombardment period in the early Earth-Moon system. We cannot exclude a rapid onset of life even in that early period (the Early Archean around 4 billion years before the present). This implies that eventually even the Moon should be a target for astrobiology, in spite of the high costs of exploration. We also need to probe the small bodies of the Solar System, with Rosetta and other missions. In addition we should bring back samples from Mars with the Mars Sample-Return mission and get further insights from oceanography beyond the terrestrial limits to which astrobiology has been confined. In this context, glaciology in Antarctica and northern Canada can lend us a hand in these analogs of the surface of the icy satellites of Jupiter, as we have discussed in Chapter3. Beyond planetary science, in Chapters 5 to 6 we have completed a brief review of the “Second Part of the Book of Life” (cf., pp. 101-131). We have discussed how the other great revolution of last century—molecular biology—can orient us in putting biology solidly into astrobiology. We illustrate how the earth sciences atmospheric physics and climatology play a role in astrobiology. Similarly, we discuss the relevance of anthropology in Chapter 6. A significant challenge while reviewing the whole spectrum of astrobiology is the “Third Part of the Book of Life”. Not surprisingly it has taken the major part of the book (cf., pp. 133-214). A fleet of missions are currently either on Mars, or in their planning stages (Chapter 7). Spacecrafts and their probes have reached, or will reach the outer Solar System: Galileo, the Europa Jupiter System Mission and Cassini Huygens (cf., Chapters 8 and 9). Technologies such as the penetrators with their potential for transporting in-situ microlaboratories to the Solar System bodies can reach the Moon (not only the very limited area known to us since the Apollo era, but also the lunar poles and its far side). Subsequently, penetrators are in principle capable of probing the icy surfaces of the Jovian satellites (and beyond) in search of geophysical insights into the origin of the bodies of the Solar System and in search of reliable and unambiguous biomarkers. Since 1995 the discovery of Michel Mayor and colleagues of a large number of exoplanets in our galactic neighborhood adds hope that the search for biomarkers outside the Solar System will yield its fruits. The Kepler mission is widening surprisingly fast our repertoire of exoplanets beyond the early efforts of Jean Schneider and colleagues with CoROT (Chapter 10). This gigantic step forward in astronomy that is relevant for astrobiology has as a major consequence with which this part of the Book of Life ends. Indeed, for over half a century the search for extraterrestrial intelligence (SETI) has improved its technological capabilities well beyond all the expectations of its pioneer Frank Drake, when he first searched for intelligent signals with Project Ozma (Chapters 11 and 12). In the concluding “Fourth Part of the Book of Life” (cf., pp. 215-280) we bring into focus additional aspects that lie beyond the frontiers of science, mainly philosophy and theology (Chapters 13 and 14 and 16). These considerations allow us to reflect on the larger issues that affect astrobiology. We have questioned our eventual ability to complete all the objectives of astrobiology. Is the distribution of life in the universe a EPILOGUE 283 project that can eventually run into conceptual difficulties? To answer these questions we bring in Chapter 15 other scientific disciplines into the science of astrobiology, including especially the physical sciences at the atomic, nuclear and subnuclear level. These scales are presently available for experiments at the Large Hadron Collider. We return to the some of the preliminary mathematical insights that were followed up at the end of the 1950s. This approach led the physicist Stanley Mandelstam to change the course of subnuclear physics away from the quantum mechanics and quantum field theory that had begun in the 1920s with Werner Heisenberg, Paul Dirac and Erwin Schrodinger and other physicists (Chapter 15, Sec. 15.7). These early efforts of Mandelstam led to a group of physicists Tullio Regge, Gabriel Veneziano, Miguel Angel Virasoro and others to a theory that eventually was given its final form by several scientists, prominent amongst which was Edward Witten. We complete our discussion of astrobiology in Chapter 16 with philosophical reflections on the pathways that our current research in astrobiology is heading. We present the reader with alternative interpretations of modern cosmology that do not necessarily close the door for us to complete the program of astrobiology, especially obtaining eventually a complete understanding of the distribution of life in a cosmos. We present a point of view, still not of general agreement, in which there may not be an intrinsic difficulty in cosmological models that would be an impediment for our understanding of the distribution of life in an evolving cosmos. Having expressed the contents of the present volume in the last few pages, it may seem pretentious for a single author to have attempted a decade ago to cover the whole spectrum of this fascinating science in “The New Science of Astrobiology”, the first edition of this book. A decade later we have made a modest attempt to repeat the previous effort hoping to eliminate the many shortcomings of our earlier book, even though the author is aware that the previous criticism addressed to a single author may be brought upon him. In spite of his single authorship, he has not proceeded in isolation. He has been fortunate to benefit from the experience of some of the scientists that were mentioned in the previous chapters. This opportunity was granted to him firstly as a graduate student attending the International Center for Theoretical Physics (ICTP) at a time when Bethe, Crick, Dirac and Heisenberg converged in Trieste for the inauguration of the present premises of the ICTP (cf., Figs. I.10, 1.3, 15.3 and 15.2). The Nobel Laureate Abdus Salam had founded the ICTP in 1964. When the author completed his career at the Simon Bolivar University (Caracas) he returned to the ICTP.
Recommended publications
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • James A. Mccloskey, Jr
    CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • Ca Alogue 1950-1951 Bulletin of the California Institute of Technology Volume 59 Number 4
    CA ALOGUE 1950-1951 BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 59 NUMBER 4 The California Institute of Technology Bulletin is published quarterly Entered as Second Class Matter at the Post Office at Pasadena, California, under the Act of August 24, 1912 CALIFORNIA INSTITUTE OF TECHNOLOGY A College, Graduate School, and Institute of Research in Science Engineering, and the Humanities CATALOGUE 1 950 . 195 1 PUBLISHED BY THE INSTITUTE, OCTOBER, 1950 PASADENA, CALIFORNIA CONTENTS PART ONE. GENERAL INFORMATION. PAGE Academic Calendar 11 Board .of Trustees ........................................... 15 Trustee Committees. 16 Administrative Officers of the Institute . .. 17 Faculty Officers and Committees, 1950-51 ....................... 18 Staff of Instruction and Research-Summary . 20 Staff of Instruction and Research ................... 35 Fellows, Scholars, and Assistants .............................. 65 California Institute Associates .... 76 .Historical Sketch . 80 Educational Policies ......................................... 82 Buildings and Facilities ...................................... 84 Study and Research at the California Institute 1. The Sciences .......................................... 87 Astronomy and Astrophysics ............................. 87 Biological Sciences ..................................... 88 Chemistry and Chemical Engineering . .. 89 Geological Sciences . .. 91 Mathematics ........................................... 92 Physics ........ , ....... '" ...... '" ............... " .. 93 2. Engineering
    [Show full text]
  • The Great-Grandmother of LUCA (Last Universal Common Ancestor)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 Be introduced to the First Universal Common Ancestor (FUCA): the great-grandmother of LUCA (Last Universal Common Ancestor) Francisco Prosdocimi1*, Marco V José2 and Sávio Torres de Farias3* 1 Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. 2 Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 CDMX, Mexico. 3 Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil. * Correspondence: [email protected]; [email protected] Abstract The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems.
    [Show full text]
  • Beyond the Big Bang • the Amazon's Lost Civilizations • the Truth
    SFI Bulletin winter 2006, vol. 21 #1 Beyond the Big Bang • The Amazon’s Lost Civilizations • The Truth Behind Lying The Bulletin of the Santa Fe Institute is published by SFI to keep its friends and supporters informed about its work. The Santa Fe Institute is a private, independent, multidiscipli- nary research and education center founded in 1984. Since its founding, SFI has devoted itself to creating a new kind of sci- entific research community, pursuing emerging synthesis in science. Operating as a visiting institution, SFI seeks to cat- alyze new collaborative, multidisciplinary research; to break down the barriers between the traditional disciplines; to spread its ideas and methodologies to other institutions; and to encourage the practical application of its results. Published by the Santa Fe Institute 1399 Hyde Park Road Santa Fe, New Mexico 87501, USA phone (505) 984-8800 fax (505) 982-0565 home page: http://www.santafe.edu Note: The SFI Bulletin may be read at the website: www.santafe.edu/sfi/publications/Bulletin/. If you would prefer to read the Bulletin on your computer rather than receive a printed version, contact Patrisia Brunello at 505/984-8800, Ext. 2700 or [email protected]. EDITORIAL STAFF: Ginger Richardson Lesley S. King Andi Sutherland CONTRIBUTORS: Brooke Harrington Janet Yagoda Shagam Julian Smith Janet Stites James Trefil DESIGN & PRODUCTION: Paula Eastwood PHOTO: ROBERT BUELTEMAN ©2004 BUELTEMAN PHOTO: ROBERT SFI Bulletin Winter 2006 TOCtable of contents 3 A Deceptively Simple Formula 2 How Life Began 3 From
    [Show full text]
  • Copy of DOC001
    BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER 1 CATALOGUE NUMBER jor 1939 PUB LIS H E D BY 'T H E INS 'T I'T U 'T E, JAN U A R Y, 1939 The California Institute of Technology Bulletin is Published Quarterly Entered as Second-Class Matter at the Post Office ~t Pasadena. California. Under the Act of August 24. 1912 BlJLLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER I A COLLEGE, GRADUATE SCHOOL, AND INSTITUTE OF RESEARCH IN SCIENCE, ENGINEERING AND THE HUMANITIES CATALOGUE NUMBER jor 1939 PASADENA· CALIFORNIA· JANUARY, 1939 CONTENTS PAGE ACADEMIC CALENDAR ....•...•..•..••..•.....•••........•..•.....•• BOARD OF TRUSTEES. • . • . • • . 6 OFFICERS: Board of Trustees. 6 Administrative Officers of the Institute. 7 Officers and Committees of the Faculty. 8 STAFF OF INSTRUCTION AND RESEARCH ...•••...... " ••. .. .. .. ....••• •• 9 STAFF OF INSTRUCTION AND RESEARCH SUMMARY. .. ... ......•..•..• .. 47 CALIFORNIA INSTITUTE ASSOCIATES................................... 58 HISTORICAL SKETCH .....•..............•...........•......•....... 60 EDUCATIONAL POLICIES .....................•............••••...•... 62 BUILDINGS AND FACILITIES. • . • . • . • . • . • . 65 ATHENJEUM ..••...•.....•••............•••....•......••.•........ 69 STUDENT HOUSES .•...••..•....................................... 70 EXTRA-CURRICULAR OPPORTUNITIES .................................. 71 STUDENT HEALT:H AND PHYSICAL EDUCATION ..••••••.•...... " • • . • . • 75 REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING. .. 78 EXPENSES ....••..........................•..•...................
    [Show full text]
  • Asia Pacific Physics Newsletter
    Asia Pacific Physics Newsletter March 2016 Volume 5 • Number 1 worldscinet.com/appn Takaaki Kajita 2015 Physics Nobel Laureate published by Institute of Advanced Studies, Nanyang Technological University (IAS@NTU) and South East Asia Theoretical Physics Association (SEATPA) South East Asia Theoretical Physics Association Asia Pacific Physics Newsletter March 2016 • Volume 5 • Number 1 A publication of the IAS@NTU Singapore and SEATPA Asia Pacific Physics Newsletter publishes articles reporting frontier discoveries in EDITORIAL physics, research highlights, and news to facilitate interaction, collaboration and 3 cooperation among physicists in Asia Pacific physics community. PEOPLE Editor-in-Chief 4 “Observing the Distant Supernova” — Interview with Kok Khoo Phua Nobel Laureate Prof Brian Schmidt Associate Editor-in-Chief “Discovering the W and Z Bosons” — Interview with Swee Cheng Lim Nobel Laureate Prof Carlo Rubbia SEATPA Committee Christopher C Bernido Phil Chan Leong Chuan Kwek Choy Heng Lai Swee Cheng Lim Ren Bao Liu Hwee Boon Low Anh Ký Nguyên Choo Hiap Oh OPINION AND COMMENTARY Kok Khoo Phua 10 China’s Great Scientific Leap Forward: Completion of a Roh Suan Tung Preecha Yupapin planned ‘Great Collider’ would transform particle physics Hishamuddin Zainuddin Freddy Zen Editorial Team NEWS Sen Mu 12 CityU’s Institute for Advanced Study will Champion Bold New Han Sun Chi Xiong Research Initiatives Case made for 'Ninth Planet' Graphic Designers Chuan Ming Loo Erin Ong Cover Photo: "Takaaki Kajita 5171- 2015" by Bengt Nyman - Own work.
    [Show full text]
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
    [Show full text]
  • William A. Fowler Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt2d5nb7kj No online items Guide to the Papers of William A. Fowler, 1917-1994 Processed by Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine. Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 2003 California Institute of Technology. All rights reserved. Guide to the Papers of William A. Consult repository 1 Fowler, 1917-1994 Guide to the Papers of William A. Fowler, 1917-1994 Collection number: Consult repository Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Processed by: Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine Date Completed: June 2000 Encoded by: Francisco J. Medina. Derived from XML/EAD encoded file by the Center for History of Physics, American Institute of Physics as part of a collaborative project (1999) supported by a grant from the National Endowment for the Humanities. © 2003 California Institute of Technology. All rights reserved. Descriptive Summary Title: William A. Fowler papers, Date (inclusive): 1917-1994 Collection number: Consult repository Creator: Fowler, William A., 1911-1995 Extent: 94 linear feet Repository: California Institute of Technology. Archives. Pasadena, California 91125 Abstract: These papers document the career of William A. Fowler, who served on the physics faculty at California Institute of Technology from 1939 until 1982.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • Signature of Controversy
    I n “In this volume Granville Sewell provides “As the debate over intelligent design grows T delightful and wide-ranging commentary on increasingly heated... it is refreshing to find a HE the origins debate and intelligent design... discussion of the topic that is calm, thoughtful, Sewell provides much needed clarity on topics and far-ranging, with no sense of having to B e ignature f that are too often misunderstood. His discussion advance an agenda or decimate the opposition. G I S o of the commonly confused problem of entropy In this regard, Granville Sewell’s In the NNI is a must read.” Beginning succeeds brilliantly.” Cornelius G. Hunter, Ph.D. William A. Dembski, Ph.D. N author of The Design Inference author of Science’s Blind Spot G ontroversy A N c In this wide-ranging collection of essays on origins, mathematician Granville Sewell looks at the D big bang, the fine-tuning of the laws of physics, and the evolution of life. He concludes that while O there is much in the history of life that seems to suggest natural causes, there is nothing to support THER Responses to critics of signature in the cEll Charles Darwin’s idea that natural selection of random variations can explain major evolutionary E S advances (“easily the dumbest idea ever taken seriously by science,” he calls it). Sewell explains S A Y why evolution is a fundamentally different and much more difficult problem than others solved s ON by science, and why increasing numbers of scientists are now recognizing what has long been I obvious to the layman, that there is no explanation possible without design.
    [Show full text]