An Interview with the Nobel Prize-Winning Biochemist Roger Y Tsien

Total Page:16

File Type:pdf, Size:1020Kb

An Interview with the Nobel Prize-Winning Biochemist Roger Y Tsien Interview Roger Y Tsien The light fantastic The remarkable American biochemist Roger Y Tsien tells us how he made his most famous discovery n 2008 Roger Y Tsien shared the alone full sized proteins, we would have to Nobel Prize in Chemistry for the adopt the techniques of molecular biology discovery and development of the rather than synthetic chemistry. green fluorescent protein (GFP). I started in around 1988 by discussing a This glowing molecular tool has collaboration with Alexander Glazer revolutionised many areas of on phycobiliproteins, a family of biochemistry research, allowing fluorescent proteins from blue-green algae. Iresearchers to visualise the expression However, these needed a separate partner of certain genes or certain protein to insert the chromophore, molecules within cells. the part of the molecule Molecular biologists have responsible for its colour. since found countless uses for GFP and Why was the similar molecules, fluorescent protein of and fluorescent the jellyfish Aequorea proteins are now an victoria so useful? essential part of In 1992, Douglas biochemists’ Prasher at the Woods molecular toolkit. Bacteria expressing Hole Oceanographic fluorescent proteins used Institution cloned and Before you discovered as ‘paint’ on a petri dish sequenced the gene for GFP GFP, your work involved from Aequorea victoria. looking for dyes that could Although he was unable to help image neuronal activity. What work on GFP any further himself, inspired you to work in this field? he was willing to give samples of its DNA The visual system is the only sensory to requestors, of which there were two: system with the ability to display lots of Martin Chalfie and me. Marty’s lab events in spatiotemporal detail, so one discovered that GFP didn’t need help has to use one’s own visual system to from any other protein in the jellyfish, investigate another creature’s nervous so GFP had both availability and system. From very early on in graduate autonomy. It has taken us almost 30 school, I was attracted to developing more years to engineer an easily techniques for visualising neuronal expressible phycobiliprotein. activity as the best way to resolve many neurons firing simultaneously. What led you to look at fluorescent I was attracted to proteins and their related genes? developing techniques My colleagues and I had painstakingly built dyes such as Fura-2 and Indo-1 – with for visualising molecular weights near 840 – for recognising neuronal activity as and visualising small calcium ions, whose molecular weight was only 40. So it seemed the best way to resolve that for the more general problem of many neurons firing recognising biochemical messengers such SIPA PRESS/REX SHUTTERSTOCK PRESS/REX SIPA as cyclic AMP (molecular weight 329), let simultaneously 6 / The Biologist / Biochemistry Supplement Biochemistry Supplement / The Biologist / 7 Interview Interview Roger Y Tsien Roger Y Tsien We want to use AFTERBEFORE biochemical differences between the tumour and normal tissue to © WENN LTD/ALAMY WENN © Left to right: Nobel Prize winners Paul make the tumour Krugman, Martin Chalfie and Roger Tsien with the then US president George W Bush fluorescent Did you ever imagine that GFP and its BEFORE derivatives would be used by so many LIGHTING THE WAY researchers in so many different ways? A matched pair of photographs I knew that an autonomously fluorescent showing a tumour about to protein module would be of immense be excised, viewed without value, but I didn’t anticipate it would have and with the aid of tumour quite so many uses. imaging peptides Do you have a favourite way in which GFP has been used? In this ‘brainbow’ image of a mouse’s It was satisfying when we got a phenomenon brain, different neurons glow with called fluorescence resonance energy different fluorescent proteins, allowing transfer (FRET) working between mutants researchers to visualise brain circuits of GFP. FRET senses the proximity of two fluorophores of different colours and had been a major goal when we set out. fluorescent substrates that are triggered synapses – and thus serve as molecular washed away by the next big wave or high But that’s now long in the past. Aequorea victoria by these enzymes to enter cells and substrates for memory. tide. Perhaps that’s a metaphor for much become trapped, and also to change of my career. How else do you think fluorescence might colour by modulating FRET (the same You hold around 100 or so patents for be used in the future? phenomenon mentioned above). A small various other biotechnology tools. Which You have a long tradition of engineering I can’t foresee a limit to future applications biotech company partly founded by me are you most proud of? in the family. Do you consider yourself a of fluorescence. After all, fluorescence is has just started a clinical trial with such In 1994, we started a biotech company chemist, biologist, bioengineer or what? an unusual and very useful property of molecules, together with the called Aurora Biosciences to use new I’m a muddled mix. When I was applying a small proportion of molecules. Under instrumentation for surgeons to see the fluorescence assays to speed up drug for my first faculty position, several biology the right circumstances it can be observed fluorescence as they operate. screening in the pharmaceutical industry. departments rejected me on the grounds in anything from single molecules to One of the projects Aurora took on was that I was a chemist, and at least one oceans, over nanoseconds to many days, What else is your lab working on to find drugs to help cystic fibrosis. Most chemistry department turned me down using the naked eye to the most at the moment? experts thought Aurora’s chances were as too much of a biologist. Almost all my sophisticated instruments. We are trying to gather evidence for a negligible, as the market for such rare work has been involved with tool building, ‘chromophore’ in the centre – it is new hypothesis for how and where the disease remedies was thought to be too but I have never had a formal engineering Can you tell us a little about fluorescence What is GFP? thought just three amino acids in the brain might store permanent memories small, and gene therapy was considered course or appointment. Fortunately, assisted cancer surgery? GFP stands for green fluorescent protein. protein chain create the fluorescent at the molecular level1. a much more promising approach. However, most forward looking departments In cancer surgery, fluorescence guidance It is a protein that glows green in the ‘chromophore’. It is stable, non-toxic to Previous hypotheses have assigned the Cystic Fibrosis Foundation backed have now adopted a more flexible and would be helpful because tumour tissue presence of UV or blue light, originally most organisms when expressed in cells, the site of memory storage to be various Aurora’s efforts, and fluorescence screening interdisciplinary viewpoint. Personally, doesn’t look any different from normal found in the bioluminescent and and requires only UV/blue light and proteins within synapses, the places at found the drug that was recently lauded by I don’t care much for labels. tissue under ordinary white light fluorescent jellyfish Aequorea victoria. oxygen to emit its eerie glow, making it which neurons communicate with each President Obama as an example of illumination. We want to use biochemical In 1992, the gene for GFP was perfect for in vivo applications. other. The difficulty with these hypotheses ‘precision medicine’. Such a long time is differences between the tumour and normal sequenced by American biologist Douglas Green fluorescent protein has since is that proteins inside synapses undergo required before one knows whether one References tissue to make the tumour fluorescent, so Prasher. The first to express the gene in been used in thousands of different continuous rapid turnover and replacement, has success or not. 1) Tsien, R. Y. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. that the surgeon can decide where to cut another organism was Martin Chalfie, an ways. Replacing a gene with the gene so that memories would require recopying Acad. Sci. USA 110(30), 12456–12461 (2013). with realtime guidance. American biochemist who shared the for GFP can result in GFP being expressed very many times over an animal or Were you interested in science as a child? Unfortunately, one cannot use GFP or its Nobel Prize with Tsien. He inserted the in the organism only in the places where person’s lifetime. I was always obsessed by pretty colours homologues, because they can be linked to gene for GFP into the bacteria E. coli and the original gene would have been Instead, we are looking at the and by technologies that seem useful. One Roger Y Tsien is professor of pharmacology malignancy only by sophisticated gene nematode worm C. elegans. The resulting expressed, creating a bright visual glycoproteins (proteins plus carbohydrates) of my earliest memories is of a beach that and professor of chemistry and biochemistry at the University of California, therapy that is not practical yet or ethical organisms then glowed green in the pattern of expression. By selectively known to form a coating just outside had a zone of coarse pebbles surrounded by San Diego. After graduating from Harvard, in human patients. Instead, we are presence of UV or blue light. labelling specific proteins, we can create synapses. We are accumulating two zones of sand. I tried to lay down a Tsien also held posts at Cambridge exploiting extracellular enzymes that The protein itself is a barrel shaped images to see exactly where those evidence that this coating, once formed, bridge of sand across the pebbles to make and Berkeley.
Recommended publications
  • The Pedersen Memorial Issue
    springer.com Chemistry : Organic Chemistry The Pedersen Memorial Issue Foreword: Charles J. Pedersen (1904-1989), Nobel Laureate in Chemistry (1987) This issue is dedicated to the memory of the late Charles J. Pedersen in recognition of his outstanding contribution to scientific research, culminating in his discovery of crown ethers and their remarkable cation complexing properties and his receipt of the 1987 Nobel Prize in Chemistry. Charlie's origin and early years in Korea did not portend the creative work in chemistry which would characterize his later life. However, we can see in his early years the influence of his Norwegian father and Japanese mother who considered his formal education to be of utmost importance. At the age of eight, he was sent abroad to Japan for schooling, first at a convent school in Nagasaki, and two years later at a French-American preparatory school in Yokohama run by a Marianist order of Catholic priests and brothers. The latter group encouraged him to attend the order's University of Dayton in Ohio where he received a bachelors degree in Springer chemical engineering. Charlie's academic experiences, his employment with du Pont, and the Softcover reprint of the creative spark which he manifested at an early stage of his scientific career are detailed in the 1st original 1st ed. 1992, VI, paper in this issue by Herman Schroeder. Schroeder had a long-time association with Charlie at edition 406 p. du Pont as a co-worker, supervisor, and friend. His recollections provide insight into Charlie's creative mind. In addition, they make it clear that a long period of creative work preceded the accidental discovery of the first synthetic crown ether.
    [Show full text]
  • What Use Is Chemistry?
    2 Inspirational chemistry What use is chemistry? Index 1.1 1 sheet This activity is based on a Sunday Times article by Sir Harry Kroto, a Nobel prize winning chemist who discovered a new allotrope of carbon – buckminsterfullerene or ‘bucky balls’. The article appeared on November 28, 2004 and is reproduced overleaf as a background for teachers. The aim is to introduce students to the scope of modern chemistry and the impact that it has on their lives, even in areas that they may not think of as related to chemistry. An alternative exercise for more able students would be to research what was used before chemical scientists had produced a particular new product or material (eg silk or wool stockings before nylon, leather footballs before synthetics, grated carbolic soap before shampoo) and then to write about the difference it would make to their lives if they did not have the modern product. Students will need: ■ Plenty of old magazines and catalogues (Argos catalogues are good as virtually everything in them would not exist without modern chemistry) ■ Large sheets of sugar paper ■ Glue and scissors. It works well if students produce the poster in groups, but then do the written work by themselves. The activity could be set for homework. Inspirational chemistry 3 What use is chemistry? Some years ago I was delighted chemistry-related industries make a to receive an honorary degree £5 billion profit on a £50 billion from Exeter University turnover, the apparent government recognising my contributions to inaction over the looming disaster chemistry – especially the is scarcely credible.
    [Show full text]
  • CRISPR-Cas9 a New Tool for Genome Editing.Pdf
    CRICRICRISSPSPEPERERRCCCaasas9s99 AA ANe Ne Neww wT To Toool olf olf orf orGe rGe Gennonomomem eE eEd Editdiitinitngingg ByB JyBen Jyen Jneninferinfer iDofer Do uDodunduand,a nK, aeK,v eKivnei nvDi noD xoDzxoezxnez,n ea,n a,d na dMn dMa rMatirnati rnJti nJie nJkienkek A AK eAKy eK yEe xEyp xEepxrepimreimenriment enpt rpto rpdorudocudecudec dbe ydb Tyb hTye hT eEh xeEp xElpoxlrpoelrore’srre ’Gsr ’uGs iuGdieud ietdo et oB t ioBo ilBooilgooylgoygy 2 The Explorer’s Guide to Biology https://explorebiology.org/ CRISPR-Cas9 A New Tool for Genome Editing Jennifer Doudna, Kevin Doxzen, and Martin Jinek Jennifer Doudna Jennifer Doudna is a professor in the Departments of Molecular and Cell Biology and the Chemistry and Chemical Engineering at the University of California, Berkeley. For her studies on CRISPR-Cas9, Dr. Doudna has received several awards including the Breakthrough Prize in the Life Sciences, the Japan Prize, and the Canada Gairdner Award. She has been leading efforts to discuss ethical uses of genome editing technologies. Doudna teaches in Bio 1A, an introductory biology class at UC Berkeley. Kevin Doxzen Kevin Doxzen, a former graduate student with Jennifer Doudna, is a sci- ence communications specialist at the Innovative Genomics Institute, which is advancing genome engineering using CRISPR technologies. 3 Martin Jinek Martin Jinek, born in Czechoslovakia and a former postdoctoral fellow with Jennifer Doudna, is now an associate professor in the Department of Biochemistry at the University of Zurich. Jinek received the EMBL John Kendrew Young Scientist Award and the Friedrich Miescher Award of the Swiss Society for Molecular and Cellular Biosciences.
    [Show full text]
  • Download This Issue As A
    MICHAEL GERRARD ‘72 COLLEGE HONORS FIVE IS THE GURU OF DISTINGUISHED ALUMNI CLIMATE CHANGE LAW WITH JOHN JAY AWARDS Page 26 Page 18 Columbia College May/June 2011 TODAY Nobel Prize-winner Martin Chalfie works with College students in his laboratory. APassion for Science Members of the College’s science community discuss their groundbreaking research ’ll meet you for a I drink at the club...” Meet. Dine. Play. Take a seat at the newly renovated bar grill or fine dining room. See how membership in the Columbia Club could fit into your life. For more information or to apply, visit www.columbiaclub.org or call (212) 719-0380. The Columbia University Club of New York 15 West 43 St. New York, N Y 10036 Columbia’s SocialIntellectualCulturalRecreationalProfessional Resource in Midtown. Columbia College Today Contents 26 20 30 18 73 16 COVER STORY ALUMNI NEWS DEPARTMENTS 2 20 A PA SSION FOR SCIENCE 38 B OOKSHELF LETTERS TO THE Members of the College’s scientific community share Featured: N.C. Christopher EDITOR Couch ’76 takes a serious look their groundbreaking work; also, a look at “Frontiers at The Joker and his creator in 3 WITHIN THE FA MILY of Science,” the Core’s newest component. Jerry Robinson: Ambassador of By Ethan Rouen ’04J, ’11 Business Comics. 4 AROUND THE QU A DS 4 Reunion, Dean’s FEATURES 40 O BITU A RIES Day 2011 6 Class Day, 43 C L A SS NOTES JOHN JA Y AW A RDS DINNER FETES FIVE Commencement 2011 18 The College honored five alumni for their distinguished A LUMNI PROFILES 8 Senate Votes on ROTC professional achievements at a gala dinner in March.
    [Show full text]
  • The 2016 Nobel Prize in Chemistry
    Pure Appl. Chem. 2016; 88(10-11): 917–918 Editorial Hugh D. Burrows* and Richard M. Hartshorn* The 2016 Nobel Prize in Chemistry DOI 10.1515/pac-2016-2005 Keywords: Ben L. Feringa; Jean-Pierre Sauvage; J. Fraser Stoddart; Nobel Prize in Chemistry; 2016. Pure and Applied Chemistry warmly congratulates Jean-Pierre Sauvage (University of Strasbourg, France), Sir J. Fraser Stoddart (Northwestern University, Evanston, IL, USA), and Bernard (Ben) L. Feringa (Univer- sity of Groningen, the Netherlands) on their award of the 2016 Nobel Prize in Chemistry. The citation from the Royal Swedish Academy of Sciences states that the award is “for the design and synthesis of molecu- lar machines”. Their work encompasses a broad spectrum of Chemistry, from elegant synthetic studies of catenanes, rotaxanes and other formerly considered exotic molecules, through coordination chemistry, and electron transfer reactions, to molecular switches and rotors driven by light and other external sources. They have all participated actively in IUPAC endorsed meetings and conference series, including the IUPAC World Congress in Chemistry, IUPAC International Conferences on Organic Synthesis (ICOS), Physical Organic Chemistry (ICPOC), and Coordination Chemistry (ICCC), and IUPAC International Symposia on Macrocyclic Chemistry (ISMC), Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS), Novel Aromatic Compounds (ISNA), Carbohydrate Chemistry (ICS), the Chemistry of Natural Products ISCNP), and Photo- chemistry. Pure Appl. Chem. publishes collections of papers based upon authoritative lectures presented at such IUPAC endorsed events, in addition to IUPAC Recommendations, and Technical Reports. We are very pleased to highlight the following publications from these three Nobel Laureates that have been published in Pure and Applied Chemistry as a result of their involvement in these conferences.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Chartered Status Charteredeverything You Need Tostatus Know Everything You Need to Know
    Chartered Status CharteredEverything you need toStatus know Everything you need to know www.rsc.org/cchem www.rsc.org/cchem ‘The best of any profession is always chartered’ The RSC would like to thank its members (pictured top to bottom) Ben Greener, Pfizer, Elaine Baxter, Procter & Gamble, and Richard Sleeman, Mass Spec Analytical Ltd, for their participation and support . Chartered Status | 1 Contents About chartered status 3 Why become chartered? 3 What skills and experience do I need? 3 The professional attributes for a Chartered Chemist 5 Supporting you throughout the programme yThe Professional Development Programme 5 yThe Direct Programme 7 How to apply 7 Achieving Chartered Scientist status 8 Revalidation 8 The next step 8 Application form 9 2 | Chartered Status ‘Having a professionally recognised qualification will build my external credibility’ Elaine Baxter BSc PhD MRSC Procter & Gamble Elaine Baxter is a Senior Scientist at Procter & Gamble (P&G). Since joining the company, she has had roles in formulation, process and technology development in skin and shaving science. She graduated in 2001, before completing a PhD on synthetic inorganic chemistry of platinum dyes with applications in solar cells. Elaine is currently working towards Chartered Chemist status through the Professional Development Programme. Why do you want to achieve Chartered Chemist status? My role involves science communication with people such as dermatologists, academics and the media; having a professionally recognised qualification will build my external credibility with these professionals. How do you feel the programme has worked for you? Working towards achieving the attributes required for the CChem award has presented me with opportunities to share my industry knowledge and help others.
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • The Nobel Foundation Annual Review 2018
    THE NOBEL FOUNDATION ANNUAL REVIEW • 2018 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 1 1901 WILHELM CONRAD RÖNTGEN The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen for his discovery of X-radiation. The X-ray tube pictured on the cover is on display at the Nobel Prize Museum. Photo: Alexander Mahmoud 2018 BERNICE A. KING “I wish to commend the Nobel Museum for (…) this new exhibition. I believe that my parents’ message of social justice and equality is as important today as ever before.” The exhibition A Right to Freedom - Martin Luther King, Jr. was inaugurated by King’s daughter Bernice A. King at the Nobel Prize Museum on 28 September 2018. Photo: Alexander Mahmoud 2 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 3 For the greatest beneft to humankind ALFRED NOBEL 4 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 “I can tell you how. It is very easy. The first thing you must do is to have great teachers.” Paul A. Samuelson, 1970 Laureate in Economic Sciences, on how to earn a Nobel Prize. obel Laureates often Luther King, Jr., and with a Nobel Prize attest to how crucial Teacher Summit on the theme Teach their teachers have been. Love and Understanding, with 350 Teachers, researchers and teachers from 15 countries attending. others who contribute Al Gore, the 2007 Peace Prize Lars Heikensten, Executive Director Nto increased knowledge are the heroes Laureate, addressed How to Solve the of the Nobel Foundation since 2011. and heroines of our age. When the very Climate Crisis when he spoke at the 2018 Photo: Kari Kohvakka idea of science is being questioned, our Nobel Peace Prize Forum in Oslo.
    [Show full text]
  • Poster Final Copy
    Introduction to Jellyfish Jellyfish have been around for over 700 million years making them one of the oldest living creatures on earth. There are almost 3,000 species of jellyfish found throughout the world's oceans. From Cnidarian jellyfish, which are often referred as “true” jellyfish, to Ctenophores (comb jellyfish), Cubic Aquarium Systems have compiled this poster showing some of the most interesting species found around the globe. Moon Jellyfish Amakusa Jellyfish Mauve Stinger Purple Striped Jellyfish Japanese Sea Nettle Aurelia aurita Sanderia malayensis Pelagia noctilca Chrysaora colorata Chrysaora pacifica Pacific Sea Nettle Black Sea Nettle Lion’s Mane Jellyfish Blue Fire Jellyfish Egg Yolk Jellyfish Chrysaora fuscescens Chrysaora achlyos Cyanea capillata Cyanea lamarckii Phacellophora camtschatica Flame Jellyfish Blue Blubber Spotted Lagoon Jellyfish Australian Spotted Lagoon Jellyfish Upside Down Jellyfish Rhopilema esculentum Catostylus mosaicus Mastigias papu Phyllorhiza punctata Cassioppea sp. Mediterranean Jellyfish Crown Jellyfish Purple Jellyfish Chrystal Jellyfish Flower Hat Jellyfish Cotylorhiza tuberculata Cephea cephea Thysanostoma thysanura Aequorea victoria Olindias formosa Immortal Jellyfish Portuguese Man O’ War Box Jellyfish Comb Jellyfish Sea Gooseberry Turritopsis dohrni Physalia physali Chironex sp. Bolinopsis sp. Pleurobrachia bachei Cubic Aquarium Systems Exotic Aquaculture Jellyfish aquariums and specialised fish tanks | Cubic Aquarium Syste International Jellyfish Wholesale Cubic Aquarium Systems build a range of unique, specialised aquariums Exotic Aquaculture are a Hong Kong based aquarium livestock supplier for jellyfish and other unusual sea creatures specializing in jellyfish wholesale to the public and home aquarium trade. www.cubicaquarium.com Copyright Sanderia Group Limited www.exoticaquaculture.com All rights reserved.
    [Show full text]
  • The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
    Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley.
    [Show full text]
  • Otto Hahn Otto Hahn
    R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively.
    [Show full text]