Cold Comfort Diversification and Adaptive Evolution Across Latitudinal Gradients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is Direct Seeding a Biologically Viable Strategy for Restoring Forest Ecosystems? Evidences from a Meta–Analysis
IS DIRECT SEEDING A BIOLOGICALLY VIABLE STRATEGY FOR RESTORING FOREST ECOSYSTEMS? EVIDENCES FROM A META–ANALYSIS 1* 2 2 Eliane Ceccon , Edgar J. González , Carlos Martorell 1 * Correspondence author: Centro Regional de Investigaciones Multidisciplinarias - Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Circuito 2, 62210, Col. Chamilpa, Cuernavaca, Morelos, Ciudad Universitaria de la UAEM, México. [email protected] 2 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, D.F. México. [email protected], [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ldr.2421 This article is protected by copyright. All rights reserved. Summary Ecological restoration has become an important technique for mitigating the human impacts on natural vegetation. Planting seedlings is the most common approach to regain lost forest cover. However, these activities require a large economic investment. Direct-seeding is considered a cheaper and easier alternative technique, in which tree seeds are introduced directly on the site rather than transplanting seedlings from nurseries. To evaluate the effectiveness of direct seeding, we conducted a comprehensive search of the literature using ―restoration‖, ―direct seeding‖ and ―sowing‖ as keywords, and we performed a meta-analysis using 30 papers and 89 species. We used two different measures of restoration success: seed germination probability and success probability (the chance that a seed germinates and survives until the end of the experiment). -
Brooklyn, Cloudland, Melsonby (Gaarraay)
BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge. -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Acacia Fimbriata Dwarf Crimson Blush 8 Eye on It During the Conference, Please Let Me Know
Australian Native Plants Society (Australia) Inc. ACACIA STUDY GROUP NEWSLETTER Group Leader and Newsletter Editor Seed Bank Curator Bill Aitchison Victoria Tanner 13 Conos Court, Donvale, Vic 3111 Phone (03) 98723583 Email: [email protected] No. 129 June 2015 ISSN 1035-4638 Contents Page From The Leader Dear Members From the Leader 1 It is now only a few months until the ANPSA Biennial Welcome 2 Conference being held in Canberra from 15-20 November. From Members and Readers 2 This is a great opportunity to catch up with some other Some Notes From Yallaroo 3 members of our Study Group, and of course to take part in Wattles With Minni Ritchi Bark 5 the great program put together by the organisers. Introduction of Australian Acacias Information relating to the Conference and details regarding to South America 6 registration are available on the Conference website Max’s Interesting Wattles 7 http://anpsa.org.au/conference2015. Our Study Group will An Acacia dealbata question from have a display at the Conference. If any Study Group Sweden 7 member who will be at the Conference could help with the Pre-treatment of Acacia Seeds 8 display, either in setting it up, or just in helping to keep an Acacia fimbriata dwarf Crimson Blush 8 eye on it during the Conference, please let me know. Books 9 Seed Bank 9 I am sure that many of our members will be aware of the Study Group Membership 10 Wattle Day Association, and the great work that it does in promoting National Wattle Day each year on 1 September. -
An Investigation of Phyllode Variation in Acacia Verniciflua and A. Leprosa
CSIRO PUBLISHING www.publish.csiro.au/journals/asb Australian Systematic Botany 18, 383–398 An investigation of phyllode variation in Acacia verniciflua and A. leprosa (Mimosaceae), and implications for taxonomy Stuart K. GardnerA, Daniel J. MurphyB,C, Edward NewbiginA, Andrew N. DrinnanA and Pauline Y. LadigesA ASchool of Botany, The University of Melbourne, Vic. 3010, Australia. BRoyal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, Vic. 3141, Australia. CCorresponding author. Email: [email protected] Abstract. Acacia verniciflua A.Cunn. and A. leprosa Sieber ex DC. are believed to be closely related, although strict interpretation of the current sectional classification of subgenus Phyllodineae places them in separate sections based on main nerve number. Six populations, comprised of the common and the southern variants of A. verniciflua and the large phyllode variant of A. leprosa, were sampled to test the value of nerve number as a taxonomic character and the current delimitation of these geographically variable species. Morphometrics, microscopy and the AFLP technique were used to compare and contrast populations. Phyllode nerve development was investigated and the abaxial nerve was found to be homologous with the mid-rib of a simple leaf. Three taxa were differentiated, two that are consistently two-nerved and one taxon that is variably one-nerved, two-nerved or both within a single plant. The first two-nerved taxon, characterised by smaller phyllodes, matches the type specimen of A. verniciflua. The second two-nerved taxon, characterised by large phyllodes, is apparently endemic to Mt William. The third taxon, with variable main nerve number, also has large phyllodes, and combines large phyllode variant A. -
Asian Pacific Journal of Tropical Disease
Asian Pac J Trop Dis 2016; 6(6): 492-501 492 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Review article doi: 10.1016/S2222-1808(16)61075-7 ©2016 by the Asian Pacific Journal of Tropical Disease. All rights reserved. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw Moshera Mohamed El-Sherei1, Alia Yassin Ragheb2*, Mona El Said Kassem2, Mona Mohamed Marzouk2*, Salwa Ali Mosharrafa2, Nabiel Abdel Megied Saleh2 1Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt 2Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt ARTICLE INFO ABSTRACT Article history: The genus Sterculia is represented by 200 species which are widespread mainly in tropical and Received 22 Mar 2016 subtropical regions. Some of the Sterculia species are classified under different genera based Received in revised form 5 Apr 2016 on special morphological features. These are Pterygota Schott & Endl., Firmiana Marsili, Accepted 20 May 2016 Brachychiton Schott & Endl., Hildegardia Schott & Endl., Pterocymbium R.Br. and Scaphium Available online 21 Jun 2016 Schott & Endl. The genus Sterculia and the related genera contain mainly flavonoids, whereas terpenoids, phenolic acids, phenylpropanoids, alkaloids, and other types of compounds including sugars, fatty acids, lignans and lignins are of less distribution. The biological activities such as antioxidant, anti-inflammatory, antimicrobial and cytotoxic activities have Keywords: been reported for several species of the genus. On the other hand, there is confusion on the Sterculia Pterygota systematic position and classification of the genus Sterculia. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Flora Survey on Hiltaba Station and Gawler Ranges National Park
Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia. -
Flora Surveys Introduction Survey Method Results
Hamish Saunders Memorial Island Survey Program 2009 45 Flora Surveys The most studied island is Sarah Results Island. This island has had several Introduction plans developed that have A total of 122 vascular flora included flora surveys but have species from 56 families were There have been few flora focused on the historical value of recorded across the islands surveys undertaken in the the island. The NVA holds some surveyed. The species are Macquarie Harbour area. Data on observations but the species list comprised of 50 higher plants the Natural Values Atlas (NVA) is not as comprehensive as that (7 monocots and 44 dicots) shows that observations for given in the plans. The Sarah and 13 lower plants. Of the this area are sourced from the Island Visitor Services Site Plan species recorded 14 are endemic Herbarium, projects undertaken (2006) cites a survey undertaken to Australia; 1 occurs only in by DPIPWE (or its predecessors) by Walsh (1992). The species Tasmania. Eighteen species are such as the Huon Pine Survey recorded for Sarah Island have considered to be primitive. There and the Millennium Seed Bank been added to some of the tables were 24 introduced species found Collection project. Other data in this report. with 9 of these being listed weeds. has been added to the NVA as One orchid species was found part of composite data sets such Survey Method that was not known to occur in as Tasforhab and wetforest data the south west of the state and the sources of which are not Botanical surveys were this discovery has considerably easily traceable. -
Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a Review
Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 203-223, 2016 Review paper Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a review S. Taylor1 and L. Kumar1 1Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. Phone: (+61) 2 67733363; Fax: (+61) 2 67732769. Corresponding Author: Subhashni Taylor (e-mail: [email protected]) Abstract The islands of the Pacific region hold three of the 35 global biodiversity hotspots with large numbers of endemic species. Global climate change will exacerbate the challenges faced by the biodiversity of this region. In this review, we identify trends in characteristics for 305 terrestrial species threatened by climate change and severe weather according to the International Union for Conservation of Nature and Natural Resources (IUCN). We then review the literature on observed and potential impacts of climate change on terrestrial biodiversity, focusing on the species’ characteristics that were identified. High-elevation ecosystems such as cloud montane forests are projected to disappear entirely by the year 2100, with corresponding global losses of their endemic biodiversity. Sea level rise threatens restricted range species on small low-lying atolls. Shifts in distribution may be possible for generalist species, but range shifts will be difficult for species with small distributions, specialized habitat requirements, slow dispersal rates, and species at high elevations. Accurate assessments of climate change impacts on biodiversity of the region are difficult because of confusion about nomenclature, the many species unknown to science, the lack of baseline data on species’ ecology and distributions, and lack of fine resolution elevation data for very small islands. -
Phylogenetic Placement of Ivodea and Biogeographic Affinities Of
Plant Systematics and Evolution (2020) 306:7 https://doi.org/10.1007/s00606-020-01633-3 ORIGINAL ARTICLE Phylogenetic placement of Ivodea and biogeographic afnities of Malagasy Rutaceae Marc S. Appelhans1,2 · Jun Wen2 Received: 6 December 2018 / Accepted: 8 January 2020 / Published online: 1 February 2020 © The Author(s) 2020 Abstract The genus Ivodea is endemic to Madagascar and the Comoros and consists of 30 species. This study is the frst to include the genus in a molecular phylogenetic analysis. We sequenced the plastid trnL–trnF and the nuclear ITS regions for three Ivodea species and revealed that the genus is monophyletic and most closely related to the African and Malagasy Vepris, refuting earlier suggestions of a close relationship between Ivodea and the Asian, Malesian, Australasian and Pacifc genera Euodia and Melicope. Ivodea and Vepris provide another example of closely related pairs of Rutaceous groups that have drupaceous and capsular/follicular fruits, respectively, thus further confrming that fruit types are not suited to delimit sub- families in Rutaceae, as has often been done in the past. Ivodea was the last of the seven Malagasy genera to be included in the Rutaceae phylogeny, making it possible to conduct an assessment of biogeographic afnities of the genera that occur on the island. Our assessments based on sister-group relationships suggest that the eight lineages (representing seven genera) of Malagasy Rutaceae either have African or have Asian afnities. Two lineages have an African origin, and one lineage has an Asian origin. Taxon sampling is insufcient to interpret the directionality of dispersal events in the remaining lineages. -
Belair National Park
Preliminary Flora List Interim Flora Species List BELAIR NATIONAL PARK (NPWS) Reserve code : NP13 Accepted Species Common name First - Last Record Acacia acinacea Wreath Wattle 01/01/1978 - 22/09/2002 Acacia longifolia var. longifolia * Sallow Wattle 01/01/1978 - 21/05/1986 Acacia melanoxylon Blackwood 01/01/1978 - 21/05/1986 Acacia myrtifolia var. myrtifolia Myrtle Wattle 01/01/1978 - 14/12/1999 Acacia paradoxa Kangaroo Thorn 01/01/1936 - 22/09/2002 Acacia pycnantha Golden Wattle 01/01/1978 - 22/09/2002 Acacia retinodes var. retinodes (hill form) Wirilda 01/01/1936 - 01/01/1936 Acacia spinescens Spiny Wattle 01/01/1936 - 01/01/1936 Acacia verticillata Prickly Moses 01/01/1936 - 01/01/1936 Acaena echinata var. Sheep's Burr 01/01/1936 - 01/01/1936 Acaena novae-zelandiae Biddy-biddy 01/01/1936 - 21/05/1986 Acetosella vulgaris * Sorrel 01/01/1987 - 01/01/1987 Acianthus pusillus Mosquito Orchid 01/01/1936 - 10/07/2000 Acrotriche fasciculiflora Mount Lofty Ground-berry 01/01/1978 - 30/11/2000 Acrotriche serrulata Cushion Ground-berry 01/01/1978 - 30/11/2000 Actinobole uliginosum Flannel Cudweed 01/01/1936 - 01/01/1936 Adiantum aethiopicum Common Maiden-hair 21/05/1986 - 21/05/1986 Agrostis aemula Blown-grass 01/01/1936 - 29/11/2000 Agrostis avenacea var. avenacea Common Blown-grass 21/05/1986 - 21/05/1986 Agrostis capillaris var. capillaris * Brown-top Bent 01/01/1987 - 01/01/1987 Aira cupaniana * Small Hair-grass 01/01/1987 - 01/01/1987 Aira elegantissima ssp. elegantissima * Delicate Hair-grass 29/11/2000 - 29/11/2000 Ajuga australis form B Lesser Bugle 01/01/1936 - 23/09/2000 Allium triquetrum * Three-cornered Garlic 01/01/1987 - 01/01/1987 Allocasuarina muelleriana ssp.