A Comparative Study of the TEA, XTEA, PRESENT and Simon Lightweight Cryptographic Schemes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems
Rochester Institute of Technology RIT Scholar Works Theses 11-2014 Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems Kai Tian Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Tian, Kai, "Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems" (2014). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems by Kai Tian A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Supervised by Dr. Mehran Mozaffari-Kermani Department of Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, NY November 2014 Approved By: Dr. Mehran Mozaffari-Kermani Assistant Professor – R.I.T. Dept. of Electrical and Microelectronic Engineering Dr. Dorin Patru Associate Professor – R.I.T. Dept. of Electrical and Microelectronic Engineering Dr. Reza Azarderakhsh Assistant Professor – R.I.T. Dept. of Computer Engineering Dr. Sohail A. Dianat Department Head - Professor –Dept. of Electrical and Microelectronic Engineering Acknowledgements I am grateful to my advisor, Dr. Mehran Mozaffari-Kermani, whose support and guidance helped me to understand the concepts clearly and complete my Masters. Special thanks also go to other professors, who helped me in my field of study, Dr. Dorin Patru, Dr. Reza Azarderakhsh and Dr. Marcin Lukowiak, for their constructive comments and participation. -
A Quantitative Study of Advanced Encryption Standard Performance
United States Military Academy USMA Digital Commons West Point ETD 12-2018 A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility Daniel Hawthorne United States Military Academy, [email protected] Follow this and additional works at: https://digitalcommons.usmalibrary.org/faculty_etd Part of the Information Security Commons Recommended Citation Hawthorne, Daniel, "A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility" (2018). West Point ETD. 9. https://digitalcommons.usmalibrary.org/faculty_etd/9 This Doctoral Dissertation is brought to you for free and open access by USMA Digital Commons. It has been accepted for inclusion in West Point ETD by an authorized administrator of USMA Digital Commons. For more information, please contact [email protected]. A QUANTITATIVE STUDY OF ADVANCED ENCRYPTION STANDARD PERFORMANCE AS IT RELATES TO CRYPTOGRAPHIC ATTACK FEASIBILITY A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Computer Science By Daniel Stephen Hawthorne Colorado Technical University December, 2018 Committee Dr. Richard Livingood, Ph.D., Chair Dr. Kelly Hughes, DCS, Committee Member Dr. James O. Webb, Ph.D., Committee Member December 17, 2018 © Daniel Stephen Hawthorne, 2018 1 Abstract The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible. -
Block Ciphers and the Data Encryption Standard
Lecture 3: Block Ciphers and the Data Encryption Standard Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) January 26, 2021 3:43pm ©2021 Avinash Kak, Purdue University Goals: To introduce the notion of a block cipher in the modern context. To talk about the infeasibility of ideal block ciphers To introduce the notion of the Feistel Cipher Structure To go over DES, the Data Encryption Standard To illustrate important DES steps with Python and Perl code CONTENTS Section Title Page 3.1 Ideal Block Cipher 3 3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6 3.2 The Feistel Structure for Block Ciphers 7 3.2.1 Mathematical Description of Each Round in the 10 Feistel Structure 3.2.2 Decryption in Ciphers Based on the Feistel Structure 12 3.3 DES: The Data Encryption Standard 16 3.3.1 One Round of Processing in DES 18 3.3.2 The S-Box for the Substitution Step in Each Round 22 3.3.3 The Substitution Tables 26 3.3.4 The P-Box Permutation in the Feistel Function 33 3.3.5 The DES Key Schedule: Generating the Round Keys 35 3.3.6 Initial Permutation of the Encryption Key 38 3.3.7 Contraction-Permutation that Generates the 48-Bit 42 Round Key from the 56-Bit Key 3.4 What Makes DES a Strong Cipher (to the 46 Extent It is a Strong Cipher) 3.5 Homework Problems 48 2 Computer and Network Security by Avi Kak Lecture 3 Back to TOC 3.1 IDEAL BLOCK CIPHER In a modern block cipher (but still using a classical encryption method), we replace a block of N bits from the plaintext with a block of N bits from the ciphertext. -
Multiple New Formulas for Cipher Performance Computing
International Journal of Network Security, Vol.20, No.4, PP.788-800, July 2018 (DOI: 10.6633/IJNS.201807 20(4).21) 788 Multiple New Formulas for Cipher Performance Computing Youssef Harmouch1, Rachid Elkouch1, Hussain Ben-azza2 (Corresponding author: Youssef Harmouch) Department of Mathematics, Computing and Networks, National Institute of Posts and Telecommunications1 10100, Allal El Fassi Avenue, Rabat, Morocco (Email:[email protected] ) Department of Industrial and Production Engineering, Moulay Ismail University2 National High School of Arts and Trades, Mekns, Morocco (Received Apr. 03, 2017; revised and accepted July 17, 2017) Abstract are not necessarily commensurate properties. For exam- ple, an online newspaper will be primarily interested in Cryptography is a science that focuses on changing the the integrity of their information while a financial stock readable information to unrecognizable and useless data exchange network may define their security as real-time to any unauthorized person. This solution presents the availability and information privacy [14, 23]. This means main core of network security, therefore the risk analysis that, the many facets of the attribute must all be iden- for using a cipher turn out to be an obligation. Until now, tified and adequately addressed. Furthermore, the secu- the only platform for providing each cipher resistance is rity attributes are terms of qualities, thus measuring such the cryptanalysis study. This cryptanalysis can make it quality terms need a unique identification for their inter- hard to compare ciphers because each one is vulnerable to pretations meaning [20, 24]. Besides, the attributes can a different kind of attack that is often very different from be interdependent. -
Block Ciphers
Block Ciphers Chester Rebeiro IIT Madras CR STINSON : chapters 3 Block Cipher KE KD untrusted communication link Alice E D Bob #%AR3Xf34^$ “Attack at Dawn!!” message encryption (ciphertext) decryption “Attack at Dawn!!” Encryption key is the same as the decryption key (KE = K D) CR 2 Block Cipher : Encryption Key Length Secret Key Plaintext Ciphertext Block Cipher (Encryption) Block Length • A block cipher encryption algorithm encrypts n bits of plaintext at a time • May need to pad the plaintext if necessary • y = ek(x) CR 3 Block Cipher : Decryption Key Length Secret Key Ciphertext Plaintext Block Cipher (Decryption) Block Length • A block cipher decryption algorithm recovers the plaintext from the ciphertext. • x = dk(y) CR 4 Inside the Block Cipher PlaintextBlock (an iterative cipher) Key Whitening Round 1 key1 Round 2 key2 Round 3 key3 Round n keyn Ciphertext Block • Each round has the same endomorphic cryptosystem, which takes a key and produces an intermediate ouput • Size of the key is huge… much larger than the block size. CR 5 Inside the Block Cipher (the key schedule) PlaintextBlock Secret Key Key Whitening Round 1 Round Key 1 Round 2 Round Key 2 Round 3 Round Key 3 Key Expansion Expansion Key Key Round n Round Key n Ciphertext Block • A single secret key of fixed size used to generate ‘round keys’ for each round CR 6 Inside the Round Function Round Input • Add Round key : Add Round Key Mixing operation between the round input and the round key. typically, an ex-or operation Confusion Layer • Confusion layer : Makes the relationship between round Diffusion Layer input and output complex. -
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants Creighton T. R. Hager, Scott F. Midkiff, Jung-Min Park, Thomas L. Martin Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 USA {chager, midkiff, jungmin, tlmartin} @ vt.edu Abstract algorithms may consume more energy and drain the PDA battery faster than using less secure algorithms. Due to Encryption algorithms can be used to help secure the processing requirements and the limited computing wireless communications, but securing data also power in many PDAs, using strong cryptographic consumes resources. The goal of this research is to algorithms may also significantly increase the delay provide users or system developers of personal digital between data transmissions. Thus, users and, perhaps assistants and applications with the associated time and more importantly, software and system designers need to energy costs of using specific encryption algorithms. be aware of the benefits and costs of using various Four block ciphers (RC2, Blowfish, XTEA, and AES) were encryption algorithms. considered. The experiments included encryption and This research answers questions regarding energy decryption tasks with different cipher and file size consumption and execution time for various encryption combinations. The resource impact of the block ciphers algorithms executing on a PDA platform with the goal of were evaluated using the latency, throughput, energy- helping software and system developers design more latency product, and throughput/energy ratio metrics. effective applications and systems and of allowing end We found that RC2 encrypts faster and uses less users to better utilize the capabilities of PDA devices. -
Mirror Cipher Using Feistel Network
Mirror Cipher using Feistel Network 1 2 3 Ihsan Muhammad Asnadi Ranindya Paramitha Tony 123 Informatics Department, Institut Teknologi Bandung, Bandung 40132, Indonesia 1 2 3 E-mail: 1 [email protected] 1 [email protected] 1 [email protected] Abstract. Mirror cipher is a cipher built by creativity which has a specific feature of mirrored round function. As other ciphers, mirror cipher could be used to secure messages’ confidentiality and integrity. This cipher receives message and key inputs from its user. Then, it runs 9 rounds of feistel networks in ECB modes. Each round would run a round function which consists of 5 functions in mirrored order (9 function calls in total): s-box substitution, row substitution, column substitution, column cumulative xor, and round key addition. This cipher is implemented using Python and has been tested using several message and key combinations. Mirror cipher has applied Shanon’s diffusion and confusion property and proven to be secured from bruteforce and frequency analysis attack. 1. Introduction 1.1. Background In this modern world, data or messages are exchanged anytime and anywhere. To protect confidentiality and integrity of messages, people usually encrypt their messages before sending them, and then decrypt the received messages before reading them. These encryption and decryption practices and techniques are contained under the big concept of cryptography. There are many ciphers (encryption and decryption algorithms) that have been developed since the BC period. Ciphers are then divided into 2 kinds of ciphers, based on how it treats the message: stream cipher and block cipher. -
Chapter 3 – Block Ciphers and the Data Encryption Standard
Symmetric Cryptography Chapter 6 Block vs Stream Ciphers • Block ciphers process messages into blocks, each of which is then en/decrypted – Like a substitution on very big characters • 64-bits or more • Stream ciphers process messages a bit or byte at a time when en/decrypting – Many current ciphers are block ciphers • Better analyzed. • Broader range of applications. Block vs Stream Ciphers Block Cipher Principles • Block ciphers look like an extremely large substitution • Would need table of 264 entries for a 64-bit block • Arbitrary reversible substitution cipher for a large block size is not practical – 64-bit general substitution block cipher, key size 264! • Most symmetric block ciphers are based on a Feistel Cipher Structure • Needed since must be able to decrypt ciphertext to recover messages efficiently Ideal Block Cipher Substitution-Permutation Ciphers • in 1949 Shannon introduced idea of substitution- permutation (S-P) networks – modern substitution-transposition product cipher • These form the basis of modern block ciphers • S-P networks are based on the two primitive cryptographic operations we have seen before: – substitution (S-box) – permutation (P-box) (transposition) • Provide confusion and diffusion of message Diffusion and Confusion • Introduced by Claude Shannon to thwart cryptanalysis based on statistical analysis – Assume the attacker has some knowledge of the statistical characteristics of the plaintext • Cipher needs to completely obscure statistical properties of original message • A one-time pad does this Diffusion -
Optimization of Core Components of Block Ciphers Baptiste Lambin
Optimization of core components of block ciphers Baptiste Lambin To cite this version: Baptiste Lambin. Optimization of core components of block ciphers. Cryptography and Security [cs.CR]. Université Rennes 1, 2019. English. NNT : 2019REN1S036. tel-02380098 HAL Id: tel-02380098 https://tel.archives-ouvertes.fr/tel-02380098 Submitted on 26 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITE DE RENNES 1 COMUE UNIVERSITE BRETAGNE LOIRE Ecole Doctorale N°601 Mathématique et Sciences et Technologies de l’Information et de la Communication Spécialité : Informatique Par Baptiste LAMBIN Optimization of Core Components of Block Ciphers Thèse présentée et soutenue à RENNES, le 22/10/2019 Unité de recherche : IRISA Rapporteurs avant soutenance : Marine Minier, Professeur, LORIA, Université de Lorraine Jacques Patarin, Professeur, PRiSM, Université de Versailles Composition du jury : Examinateurs : Marine Minier, Professeur, LORIA, Université de Lorraine Jacques Patarin, Professeur, PRiSM, Université de Versailles Jean-Louis Lanet, INRIA Rennes Virginie Lallemand, Chargée de Recherche, LORIA, CNRS Jérémy Jean, ANSSI Dir. de thèse : Pierre-Alain Fouque, IRISA, Université de Rennes 1 Co-dir. de thèse : Patrick Derbez, IRISA, Université de Rennes 1 Remerciements Je tiens à remercier en premier lieu mes directeurs de thèse, Pierre-Alain et Patrick. -
Chapter 2 the Data Encryption Standard (DES)
Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this. -
Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPECK
cryptography Article Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPECK Sarah A. Alzakari * and Poorvi L. Vora Department of Computer Science, The George Washington University, 800 22nd St. NW, Washington, DC 20052, USA; [email protected] * Correspondence: [email protected] Abstract: We apply McKay’s pseudo-linear approximation of addition modular 2n to lightweight ARX block ciphers with large words, specifically the SPECK family. We demonstrate that a pseudo- linear approximation can be combined with a linear approximation using the meet-in-the-middle attack technique to recover several key bits. Thus we illustrate improvements to SPECK linear distinguishers based solely on Cho–Pieprzyk approximations by combining them with pseudo-linear approximations, and propose key recovery attacks. Keywords: SPECK; pseudo-linear cryptanalysis; linear cryptanalysis; partly-pseudo-linear attack 1. Introduction ARX block ciphers—which rely on Addition-Rotation-XOR operations performed a number of times—provide a common approach to lightweight cipher design. In June 2013, a group of inventors from the US’s National Security Agency (NSA) proposed two families of lightweight block ciphers, SIMON and SPECK—each of which comes in a variety of widths and key sizes. The SPECK cipher, as an ARX cipher, provides efficient software implementations, while SIMON provides efficient hardware implementations. Moreover, both families perform well in both hardware and software and offer the flexibility across Citation: Alzakari, S.; Vora, P. different platforms that will be required by future applications [1,2]. In this paper, we focus Partly-Pseudo-Linear Cryptanalysis on the SPECK family as an example lightweight ARX block cipher to illustrate our attack. -
TS 135 202 V7.0.0 (2007-06) Technical Specification
ETSI TS 135 202 V7.0.0 (2007-06) Technical Specification Universal Mobile Telecommunications System (UMTS); Specification of the 3GPP confidentiality and integrity algorithms; Document 2: Kasumi specification (3GPP TS 35.202 version 7.0.0 Release 7) 3GPP TS 35.202 version 7.0.0 Release 7 1 ETSI TS 135 202 V7.0.0 (2007-06) Reference RTS/TSGS-0335202v700 Keywords SECURITY, UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.