Virtual Screening on Indonesian Herbal Compounds As COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modeling Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Screening on Indonesian Herbal Compounds As COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modeling Approaches Virtual Screening on Indonesian Herbal Compounds as COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modeling Approaches Linda Erlina Universitas Indonesia Raka Indah Paramita ( [email protected] ) Universitas Indonesia https://orcid.org/0000-0002-8166-4479 Wisnu Ananta Kusuma Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Fadilah Fadilah Universitas Indonesia Aryo Tedjo Universitas Indonesia Irandi Putra Pratomo Universitas Indonesia Nabila Sekar Ramadhanti Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Ahmad Kamal Nasution Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Fadhlal Khaliq Surado Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Aries Fitriawan Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Khaerunissa Anbar Istiadi Universitas Indonesia Arry Yanuar Universitas Indonesia Research article Keywords: COVID-19, Machine Learning, Pharmacophore Modeling, Molecular Docking, Indonesian Herbal Compounds, 3CLPro, SARS-CoV-2 Posted Date: June 11th, 2020 Page 1/33 DOI: https://doi.org/10.21203/rs.3.rs-29119/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/33 Abstract Background Status of the latest developments from the spread of COVID-19 in Indonesia has reached 15438 cases with 1028 cases of patients died, updated on May 13, 2020. Unfortunately, the number of infected continues to overgrow, and no drugs have been approved for effective treatment. This research aims to nd potential candidate compounds in Indonesian herbal as COVID-19 supportive therapy using machine learning and pharmacophore modeling approach. Methods For a machine learning approach, we used three classication methods that have different principles in decision making, such as SVM, MLP, and Random Forest. By using these different methods, it is expected that more optimal screening results can be obtained than using only one method. Moreover, for a pharmacophore modeling approach, we did the structure-based method on the 3D structure of SARS-CoV- 2 main protease (3CLPro) and using known SARS, MERS, and SARS-CoV-2 repurposing drugs from literature as data sets on the ligand-based method. Lastly, we used molecular docking to analyse the interaction between 3CLpro (main protease) protein with 14 hit compounds from the Indonesian Herbal Database (HerbalDB) and Lopinavir as a positive control. Results The models yielded by SVM, RF, and MLP were used for screening in herbal compounds obtained from HerbalDB and got 125 potential compounds. Whereas the structure-based pharmacophore modeling gave eight hit compounds and the ligand-based methods produced more than a hundred hit compounds. Based on the screening on HerbalDB using these two prediction approaches, we got 14 hit compounds candidates. Further analysis was done using molecular docking to know the interaction between each compound and main protease of SARS-CoV-2 as inhibitory agents. From molecular docking analysis, we got six potential compounds as the main protease of SARS-CoV-2 inhibitor, i.e Hesperidin, Kaempferol- 3,4'-di-O-methyl ether (Ermanin); Myricetin-3-glucoside, Peonidine 3-(4’-arabinosylglucoside); Quercetin 3- (2G-rhamnosylrutinoside); and Rhamnetin 3-mannosyl-(1–2)-alloside. Conclusions Herbal compounds from various plants were potential as candidates of SARS-CoV-2 antivirals. Based on our research and literature study, one of the potential commodity crops in Indonesia is Psidium guajava (guava) and can be directly used by the community. Page 3/33 Introduction The new coronavirus, designated as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), was rst identied in Wuhan, China, in December 2019 [1]. SARS-CoV-2 belongs to the family of Coronaviridae, single-stranded RNA virus (+ ssRNA) that spreads widely among humans and other mammals, causing a wide range of infections from common cold symptoms to fatal diseases, such as severe respiratory syndrome [2, 3]. Status of the latest developments from the spread of COVID-19 in Indonesia has reached 15438 cases with 1028 cases of patients died, updated on May 13, 2020 (data taken from www.covid19.go.id). Unfortunately, the number of infected continues to overgrow, and no drugs have been approved to be effective. Therefore, the need to discover and develop drugs for the treatment of the Coronavirus Disease 2019 (COVID-19) is urgent. Potential anti-coronavirus therapies can be divided into two categories depending on the target, one is acting on the human immune system or human cells, and the other is on coronavirus itself. In terms of the human immune system, the innate immune system response plays an important role in controlling the replication and infection of coronavirus, and interferon is expected to enhance the immune response [4]. Blocking the signal pathways of human cells required for virus replication may show a certain antiviral effect. The therapies acting on the coronavirus itself include preventing the synthesis of viral RNA through acting on the genetic material of the virus, inhibiting virus replication through acting on critical enzymes of virus, and blocking the virus binding to human cell receptors or inhibiting the virus’s self-assembly process through acting on some structural proteins [5]. Exploring new medicines for emerging and rapidly spreading diseases such as SARS-CoV-2 could be carried out through drug repurposing strategy to bypass the pre-clinical steps that usually require laborious works and resources. In addition, we also need to consider developing agents which in the future could be more easily utilized by the people. For this purpose, exploration of natural resources that are often used by the people is the best choice. Here, we purpose a research to nd potential candidate compounds in Indonesian plants as COVID-19 supportive therapy by using machine learning and pharmacophore modeling approach. The results of this study produced several potential compound candidates that could be used for supportive purposes and preventive as well, because the candidate plants (especially commodity crops) could be easily used directly by the community. Materials And Methods In this study, we combined two approaches of screening, by machine learning and pharmacophore modeling. The compounds that overlap from two approaches were further analysed using molecular docking. The graphical methods in this study is represented in Fig. 1. Machine Learning In big data analysis, for biomedical research, machine learning can be used to predict the drug-target interactions (DTI) based on chemical structure and genomic sequence information [6]. In this study the Page 4/33 machine learning approach in DTI prediction can be divided into four steps. First, collecting drug and protein target from literature and public domain database as training dataset; second, extracting chemical structure features and genomic sequence features from drug and protein targets dataset; third, training the prediction model using DTI training dataset; last, utilizing the predictive model to make predictions for herbal compounds data set. Dataset The original dataset used in this study, which consisted of drugs and protein targets, is obtained from a published review by Li and Clercq [7] and Wu et. al [5] in 2020. There are 81 virus-based drugs (Table 1), 17 human-based drugs (Table 2), 15 host-based proteins and 8 virus-based proteins (Table 3). To extend the exploration of drug-target interactions, we input protein targets and drugs into SuperTarget web resources [8]. The outputs of SuperTarget were not only the interactions between drugs and protein targets but also the new protein targets and new drugs (Table 4) that were not previously mentioned in previous paper. The total number of data obtained from literature and SuperTarget is 119 drugs, 335 protein targets, and 685 interactions (Additional le 1). Moreover, the total possible interaction that might exist is 119 drugs*335 targets = 39.865 interactions. Thus, there are 39.865–685 = 39.180 unknown interactions. We used 400 herbal compounds obtained from HerbalDB [9] as a testing dataset. The training and testing dataset required to be extracted into features. In this research, PubChem ngerprint and dipeptide descriptor were used as the drug compound features and the protein target features, respectively. PubChem ngerprint was acquired using PubChemPy library in python while dipeptide descriptor was calculated using protr package in R. Each record consists of 881 compound ngerprints and 400 protein dipeptide descriptors. For the training dataset, the drug which had interaction with a target was labeled as 1, otherwise was labeled as 0. Figure 2 shows the process of feature extraction from drug target interactions dataset. Page 5/33 Table 1 List of Potential Virus based Drug Related to COVID-19 Drug name Reference Drug name Reference Alfuzosin [5] Idarubicin [5] Almitrine [5] Indinavir [5] Amodiaquine [10] Iopromide [5] Amprenavir [5] Isotretinoin [5] Atazanavir [5] Itraconazole [5] Atovaquone [5] Lavodropropizine [5] Benzylpenicilloyl G [5] Loperamide [11] Bromocriptine [5] Lopinavir [11–15] b-thymidine [5] Lutein [5] Candoxatril [5] Lymecycline [5] Carvedilol [5] Masoprocol [5] Cefpiramide [5] Meoquine [15] Ceftibuten [5] Mimosine [5] Cefuroxime [5] Montelukast [5] Chenodeoxycholic acid [5] Nafamostat [16, 17] Chloramphenicol [5] Nelvinar [5] Chlorhexidine [5] Nepafenac [5] Cilastatin [5]
Recommended publications
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Pharmacological Activities and Biologically Active Compounds Of
    Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Phytochemistry: Advances in Research, 2006: 87-103 ISBN: 81-308-0034-9 Editor: Filippo Imperato Pharmacological activities and biologically active compounds 4 of Bulgarian medicinal plants Stephanie Ivancheva, Milena Nikolova and Reneta Tsvetkova Department of Applied Botany, Institute of Botany, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria Abstract Bulgarian medicinal plants, which have been studied during the last years, are reviewed. The review includes the following families: Amaryllidaceae, Asteraceae, Berberidaceae, Boraginaceae, Fabaceae, Geraniaceae, Lamiaceae, Oleaceae, Onagraceae, Scrophulariaceae, Solanaceae, Ranunculaceae, Rosaceae, Rutaceae, Valerianaceae, Zygophyllaceae. Main pharmacological properties are antiviral, antimicrobial, antioxidative, anti-inflammatory, antiseptic, spasmolytic, sedative and hypotensive. Correspondence/Reprint request: Dr. Stephanie Ivancheva, Department of Applied Botany, Institute of Botany Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. E-mail: [email protected] 88 Stephanie Ivancheva et al. Introduction Bulgaria is situated in the Balkan peninsula, South-East Europe, between 22˚ 21’ 40” and 28˚ 36’ 35” E longitude, and 41˚ 14’ 05” and 44˚ 12’ 45” N latitude, occupies the area of 110 912 km2 with elevations ranging from 0 to 2925 m and has corresponding subalpine, Mediterranean and continental climates. The relief of the country is quite diverse ranging from plains to low hills and high mountains. The climate is moderate continental to modified continental, but in southern regions reflects rather a strong Mediterranean influence. As a result of this climatic conditions the Bulgarian flora is remarkable for its diversity (3500 plant species including 600 known medicinal plants) [1]. Bulgarian Flora has become very famous for the treatment of Parkinson disease with Atropa belladonna L.
    [Show full text]
  • New Insights Into the Epigenetic Activities of Natural Compounds
    New Insights into the Epigenetic Activities of Natural Compounds Melita Vidakovic, Jessica Marinello, Maija Lahtela-Kakkonen, Daumantas Matulis, Vaida Linkuvienė, Benoît Y. Michel, Ruta Navakauskienė, Michael S. Christodoulou, Danielle Passarella, Saulius Klimasauskas, et al. To cite this version: Melita Vidakovic, Jessica Marinello, Maija Lahtela-Kakkonen, Daumantas Matulis, Vaida Linkuvienė, et al.. New Insights into the Epigenetic Activities of Natural Compounds. OBM Genetics, LIDSEN Publishing Inc., 2018, 131 (8), pp.3033-41. 10.21926/obm.genet.1803029. inserm-01981397 HAL Id: inserm-01981397 https://www.hal.inserm.fr/inserm-01981397 Submitted on 15 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Access OBM Genetics Research Article New Insights into the Epigenetic Activities of Natural Compounds Melita Vidakovic 1, †, Jessica Marinello 2, †, Maija Lahtela-Kakkonen 3, Daumantas Matulis 4, Vaida Linkuvienė 4, Benoît Y. Michel 5, †, Ruta Navakauskienė 6, Michael S. Christodoulou 7, †, Danielle Passarella 8, Saulius Klimasauskas 9, Christophe Blanquart 10, Muriel Cuendet 11, Judit Ovadi 12, Stéphane Poulain 13, †, Fabien Fontaine-Vive 5, Alain Burger 5, Nadine Martinet 5,* 1. Department of Molecular Biology, University of Beograd, Bulevar despota Stefana 142, 11000 Beograd, Serbia; E-Mail: [email protected] 2.
    [Show full text]
  • Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis.
    [Show full text]
  • Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,*
    Chemodiversity of Exudate Flavonoids in Seven Tribes of Cichorioideae and Asteroideae (Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,* a Department of Plant Systematics and Evolution Ð Comparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Wien, Austria b Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 62c, 155Ð163 (2007); received October 26/November 24, 2006 Members of several genera of Asteraceae, belonging to the tribes Mutisieae, Cardueae, Lactuceae (all subfamily Cichorioideae), and of Astereae, Senecioneae, Helenieae and Helian- theae (all subfamily Asteroideae) have been analyzed for chemodiversity of their exudate flavonoid profiles. The majority of structures found were flavones and flavonols, sometimes with 6- and/or 8-substitution, and with a varying degree of oxidation and methylation. Flava- nones were observed in exudates of some genera, and, in some cases, also flavonol- and flavone glycosides were detected. This was mostly the case when exudates were poor both in yield and chemical complexity. Structurally diverse profiles are found particularly within Astereae and Heliantheae. The tribes in the subfamily Cichorioideae exhibited less complex flavonoid profiles. Current results are compared to literature data, and botanical information is included on the studied taxa. Key words: Asteraceae, Exudates, Flavonoids Introduction comparison of accumulation trends in terms of The family of Asteraceae is distributed world- substitution patterns is more indicative for che- wide and comprises 17 tribes, of which Mutisieae, modiversity than single compounds. Cardueae, Lactuceae, Vernonieae, Liabeae, and Earlier, we have shown that some accumulation Arctoteae are grouped within subfamily Cichori- tendencies apparently exist in single tribes (Wol- oideae, whereas Inuleae, Plucheae, Gnaphalieae, lenweber and Valant-Vetschera, 1996).
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Virtual Screening on Indonesian Herbal Compounds As COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modelling Approaches
    Virtual Screening on Indonesian Herbal Compounds as COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modelling Approaches Linda Erlina Universitas Indonesia Raka Indah Paramita ( [email protected] ) Universitas Indonesia https://orcid.org/0000-0002-8166-4479 Wisnu Ananta Kusuma Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Fadilah Fadilah Universitas Indonesia Aryo Tedjo Universitas Indonesia Irandi Putra Pratomo Universitas Indonesia Nabila Sekar Ramadhanti Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Ahmad Kamal Nasution Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Fadhlal Khaliq Surado Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Aries Fitriawan Institut Pertanian Bogor Fakultas Matematika dan Ilmu Pengetahuan Alam Khaerunissa Anbar Istiadi Universitas Indonesia Arry Yanuar Universitas Indonesia Research article Keywords: COVID-19, Machine Learning, Pharmacophore Modelling, Molecular Docking, Indonesian Herbal Compounds, 3CLPro, SARS-CoV-2 Posted Date: October 20th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-29119/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Virtual Screening on Indonesian Herbal Compounds as COVID-19 Supportive Therapy: Machine Learning and Pharmacophore Modelling Approaches Linda Erlina1,2, Rafika Indah Paramita1,2*, Wisnu Ananta Kusuma3,4*, Fadilah Fadilah1,2, Aryo Tedjo1,2, Irandi Putra Pratomo2,5, Nabila Sekar Ramadhanti3, Ahmad Kamal Nasution3, Fadhlal Khaliq Surado3, Aries Fitriawan3, Khaerunissa Anbar Istiadi2, Arry Yanuar6 1. Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia. Jalan Salemba Raya number 4, DKI Jakarta - 10430, Indonesia 2. Bioinformatics Core Facilities - IMERI, Faculty of Medicine, Universitas Indonesia. Jalan Salemba Raya number 6, DKI Jakarta - 10430, Indonesia 3.
    [Show full text]
  • Planta Medica
    www.thieme.de/fz/plantamedica | www.thieme-connect.de/ejournals Planta Medica July 2009 · Page 877 – 1094 · Volume 75 9 · 2009 Editorial Poster 877 Editorial 903 Topic A: Lead finding from Nature 928 Topic B: Conservation and biodiversity issues 878 Lectures 939 Topic C: Plants and aging of the population 944 Topic D: Natural products and neglected diseases Workshops 882 WS1 Workshops for Young Researchers: 966 Topic E: Anti-cancer agents Validation of Analytical Methods 988 Topic F: HIV and viral diseases 882 WS2 Workshops for Young Researchers: Cell Culture 991 Topic G: Quality control and safety assessments of phytomedicines 882 WS3 Permanent Committees on Manufacturing and Quality Control of Herbal Remedies and 1007 Topic H: Prevention of metabolic diseases Regulatory Affairs of Herbal Medicinal Products by medicinal plants and nutraceuticals 883 WS4 Permanent Committee on Biological and 1019 Topic I: Cosmetics, flavours and aromas Pharmacological Activity of Natural Products: Phytoestrogens: risks and benefits for human 1029 Topic J: Free Topic health 883 WS5 Permanent Committee on Breeding and 1083 Authors’ Index Cultivation of Medicinal Plants: Genetic Resources, Conservation and Breeding 1094 Masthead 884 Short lectures Editorial 877 57th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research Date/Place: Geneva, Switzerland, August 16 – 20, 2009 Chairman: Kurt Hostettmann Dear Colleagues, The 57th Congress of the Society of Medicinal Plant and Natural Product research will be held this year in Geneva, Switzerland. The congress venue is going to be at the CICG (Centre International des Confrences Genve) which is very well equipped to host such an important scientific event.
    [Show full text]
  • Impact of Plant Origin on Eurasian Propolis on Phenolic Profile And
    biomolecules Article Impact of Plant Origin on Eurasian Propolis on Phenolic Profile and Classical Antioxidant Activity Piotr Oki ´nczyc 1,* , Jarosław Widelski 2, Jakub Szperlik 3,* , Magdalena Zuk˙ 3 , Tomasz Mroczek 4, Krystyna Skalicka-Wo´zniak 4 , Zuriyadda Sakipova 5, Gabriela Widelska 6 and Piotr Marek Ku´s 1 1 Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wrocław, Poland; [email protected] 2 Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 3 Faculty of Biotechnology, University of Wroclaw, 50-383 Wrocław, Poland; [email protected] 4 Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (T.M.); [email protected] (K.S.-W.) 5 School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; [email protected] 6 Department of Inorganic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] * Correspondence: [email protected] (P.O.); [email protected] (J.S.) Abstract: Propolis is a bee product with known medical properties, including antioxidant activity. The scope of the study is profiling 19 different Eurasian propolis samples (mostly from Russia and Kazakhstan, Kyrgyzstan, Poland, Ukraine, and Slovakia). Profiles of propolises were investigated by ultra-high-performance liquid chromatography–diode array detector–mass spectrometry (UPLC-DAD- MS). Classical antioxidant properties, which are based on electron donation mechanism, were assessed by DPPH, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) Citation: Oki´nczyc,P.; Widelski, J.; assays.
    [Show full text]
  • Molecular Docking of Secondary Metabolites from Indonesian Marine and Terrestrial Organisms Targeting SARS-Cov-2 ACE-2, Mpro, and Plpro Receptors
    Pharmacia 68(3): 533–560 DOI 10.3897/pharmacia.68.e68432 Research Article Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, Mpro, and PLpro receptors Gita Syahputra1, Nunik Gustini1, Bustanussalam Bustanussalam1, Yatri Hapsari1, Martha Sari1, Ardi Ardiansyah1, Asep Bayu1, Masteria Yunovilsa Putra1 1 Research Center for Biotechnology, Indonesian Institute of Sciences. Jl. Raya Jakarta-Bogor Km.46 Cibinong 16911, Indonesia Corresponding authors: Gita Syahputra ([email protected]); Masteria Yunovilsa Putra ([email protected]; [email protected]) Received 9 May 2021 ♦ Accepted 29 June 2021 ♦ Published 23 July 2021 Citation: Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY (2021) Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, Mpro, and PLpro receptors. Pharmacia 68(3): 533–560. https://doi.org/10.3897/pharmacia.68.e68432 Abstract With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used.
    [Show full text]
  • In Silico, in Vitro and in Vivo Memory Enhancing Activity
    IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM-INDUCED LEARNING IMPAIRMENT IN MICE Thesis submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai for the award of the degree of DOCTOR OF PHILOSOPHY in PHARMACY Submitted by A. MADESWARAN, M. Pharm., Under the guidance of Dr. K. ASOK KUMAR, M. Pharm., Ph.D. College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore – 641 044, Tamil Nadu, India. JUNE 2017 Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai, for the award of degree of DOCTOR OF PHILOSOPHY in the FACULTY OF PHARMACY was carried out by Mr. A. MADESWARAN, in College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, under my direct supervision and guidance to my fullest satisfaction. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma. Dr. K. Asok Kumar, M.Pharm., Ph.D. Professor & Head, Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, Tamil Nadu - 641 044. Place: Coimbatore – 44. Date: Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr.
    [Show full text]
  • Stevia Genus: Phytochemistry and Biological Activities Update
    molecules Review Stevia Genus: Phytochemistry and Biological Activities Update Jimena Borgo 1,2,3, Laura C. Laurella 1,2, Florencia Martini 1,3, Cesar A. N. Catalán 4 and Valeria P. Sülsen 1,2,3,* 1 Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; [email protected] (J.B.); [email protected] (L.C.L.); fl[email protected] (F.M.) 2 Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina 3 Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina 4 Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina; [email protected] * Correspondence: [email protected] Abstract: The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the Citation: Borgo, J.; Laurella, L.C.; extracts and isolated compounds.
    [Show full text]