General News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HYMENOPTERA: BRACONIDAE: EUPHORINAE)* by SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
CORE Metadata, citation and similar papers at core.ac.uk Provided by MUCC (Crossref) A NEW MEXICAN GENUS AND SPECIES OF DINOCAMPINI WITH SERRATE ANTENNAE (HYMENOPTERA: BRACONIDAE: EUPHORINAE)* BY SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 The cosmopolitan braconid subfamily Euphorinae (sensu Shaw 1985, 1987, 1988) comprises 36 genera of koinobiont endoparasi- toids, which parasitize the adult stages of holometabolous insects or nymphs and adults of hemimetabolous insects (Muesebeck 1936, 1963; Shenefelt 1980; Loan 1983; Shaw 1985, 1988). Occasionally the parasitoids of holometabolous insects will oviposit into larvae as well as adults (Smith, 1960; David & Wilde, 1973; Semyanov, 1979), but this only occurs where larvae are ecologically coincident with adults, living and feeding on the same plants (Tobias, 1966). Obrycki et al. (1985) found that Dinocampus coccinellae (Schrank) will oviposit into all larval instars, and pupae, as well as adults; however, the highest percentage of successful parasitization occurred when adults were attacked. Only a few papers have discussed euphorines of Mexico in particular (Muesebeck 1955; Shaw 1987). The euphorine tribe Dinocampini was defined by Shaw (1985, 1987, 1988) to comprise three genera with ocular setae, antennal scape three times longer than wide, and labial palpus reduced to two segments. As far as is known, members of the tribe Dinocampini parasitize adult beetles; Dinocampus Foerster parasitizes Coccinel- lidae (Shenefelt 1980) and Ropalophorus Curtis parasitizes Scolyti- dae (Shenefelt 1960, Shaw 1988). The hosts of the third included genus, Centistina Enderlein, are not known. Because these genera are known only from females (Balduf 1926; Shenefelt 1960), it seems possible that females of the entire tribe are thelyotokous, reproduc- ing parthenogenetically and producing only female progeny. -
Dynamics of Salticid-Ant Mimicry Systems
ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation. -
Coccinellidae)
ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology. -
Development of Microplitiscroceipes As a Biological Sensor
eea_743.fm Page 249 Wednesday, July 9, 2008 4:03 PM DOI: 10.1111/j.1570-7458.2008.00743.x Blackwell Publishing Ltd MINI REVIEW Development of Microplitis croceipes as a biological sensor J. K. Tomberlin1*, G. C. Rains2 & M. R. Sanford1 1Department of Entomology, Texas A&M University, College Station, TX 77845-2475, USA, and 2Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31783, USA Accepted: 2 May 2008 Key words: associative learning, Wasp Hound®, Hymenoptera, Braconidae, conditioning, medical diagnosis, forensics, food safety, national security, plant disease Abstract Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles. -
Divergent Life History Strategies in Congeneric Hyperparasitoids
Evol Ecol DOI 10.1007/s10682-016-9819-6 ORIGINAL PAPER Divergent life history strategies in congeneric hyperparasitoids 1,2 3,4 1 Bertanne Visser • Ce´cile Le Lann • Helen Snaas • 5 1,4 Oriol Verdeny-Vilalta • Jeffrey A. Harvey Received: 26 March 2015 / Accepted: 20 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract Life histories can reveal important information on the performance of indi- viduals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strate- gies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pres- sures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns. -
VU Research Portal
VU Research Portal Parasitism and the Evolutionary Loss of Lipogenesis Visser, B. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Visser, B. (2012). Parasitism and the Evolutionary Loss of Lipogenesis. Ipskamp B.V. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Parasitism and the Evolutionary Loss of Lipogenesis Cover: Symbiose mensuur tussen natuur en cultuur. Cover design: Leendert Verboom Lay-out: Bertanne Visser Printing: Ipskamp Drukkers B.V., Enschede Thesis 2012-1 of the Department of Ecological Science VU University Amsterdam, the Netherlands This research was supported by the Netherlands Organisation for Scientific Research (NWO, Nederlandse organisatie voor Wetenschappelijk Onderzoek), grant nr. 816-03-013. isbn xxx VRIJE UNIVERSITEIT Parasitism and the Evolutionary Loss of Lipogenesis ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. -
Rearing of Parasitoid Braconid Wasp Dinocampus Coccinellae in a Simplified Tritrophic System
Bulletin of Insectology 71 (2): 287-293, 2018 ISSN 1721-8861 Rearing of parasitoid braconid wasp Dinocampus coccinellae in a simplified tritrophic system Santolo FRANCATI Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Italy Abstract Mass-rearing of beneficial arthropods often requires a multitrophic system for the rearing of entomophagous species. The use of artificial diets can facilitate this work by simplifying the number of elements in the system. Rearing Dinocampus coccinellae (Schrank) (Hymenoptera Braconidae), a parasitoid of different ladybird species, requires four elements: plants where the prey is reared, prey (i.e. aphids), hosts that feed on that prey (such as ladybirds) and the said parasitoids. This study attempted to simplify this rearing system by feeding the host, for a part of its life, with an artificial diet. A series of life history parameters was meas- ured in 3 generations of parasitoid rearing. Results show that the host’s food, parasitoid generation, or interaction between these two factors, does not affect the yield of D. coccinellae adults. However, the time of development became longer and the adult lifespan (of second generation) became shorter with artificial food. Overall, the data seems to suggest that it is possible to simplify a multitrophic system without great consequences on the performance of parasitoids, if the nutritional needs of the species are supported. Key words: Mass-rearing, multitrophic system, Harmonia axyridis, Ephestia kuehniella, artificial diet. Introduction cial diets are less nutritious than the natural prey or hosts (Grenier, 2009), then their quality as biological The mass-rearing and release of beneficial arthropods control agents decreases (Grenier and De Clercq, 2003; are the fundamentals of augmentative biological control Riddick, 2009). -
An Annotated Checklist of Criocerinae (Coleoptera: Chrysomelidae) of Iran
Acta entomologica serbica, 20 19, 24(2) : 1-10 UDC : 595.768.1(55) DOI: 10.5281/zenodo.3541681 AN ANNOTATED CHECKLIST OF CRIOCERINAE (COLEOPTERA: CHRYSOMELIDAE) OF IRAN EBRU GÜL ASLAN 1* and HASSAN GHAHARI 2 1 Süleyman Demirel University, Faculty of Arts and Science, Biology Department, 32260, Isparta, Turkey *E-mail: [email protected] (corresponding author) 2 Department of Plant Protection, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran E-mail: [email protected] Abstract A checklist for Iranian Criocerinae Latreille (Coleoptera: Chrysomelidae) is proposed. Based on a literature review, a total of 13 species within four genera, Crioceris Geoffroy (five species), Lilioceris Reitter (four species), Lema Fabricius (one species) and Oulema Des Gozis (three species), are given. Among the listed species, Lema (Lema ) cyanella Linnaeus, 1758 is a new record for the fauna of Iran. KEY WORDS : Fauna, species diversity, catalogue, Criocerinae, Palaearctic, Iran Introduction The subfamily Criocerinae (Coleoptera: Chrysomelidae), known as shining leaf beetles, includes 22 genera and about 1500 described species worldwide, of which more than 200 occur in the Palaearctic region (Schmitt, 2010; Bezděk & Schmitt, 2017). The majority of the taxa inhabit subtropical and tropical habitats and are arranged in five well-known genera; Crioceris Müller, 1764, Lilioceris Reitter, 1913, Lema Fabricius, 1798, Oulema Gozis, 1886, and lastly Neolema Monrós, 1951, which is known only from the New World (Matsumura et al. , 2014). Among these genera, Lema constitutes the largest group (about 900 species) with nearly 60% of the subfamily’s identified species (Warchałowski, 2011; Vencl & Leschen, 2014). Members of the subfamily are characterized by their glabrous, shiny appearance with a distinctly narrowed and constricted pronotum (Schmitt, 1988; White, 1993). -
A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus Fabarum: Genomic Structure, Prevalence, and Transmission
viruses Article A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus fabarum: Genomic Structure, Prevalence, and Transmission 1,2, , 1,2 1,2, Martina N. Lüthi * y , Christoph Vorburger and Alice B. Dennis z 1 Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; [email protected] (C.V.); [email protected] (A.B.D.) 2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland * Correspondence: [email protected] Current address: Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland. y Current address: Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse z 24–25, 14476 Potsdam, Germany. Received: 17 November 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: We report on a novel RNA virus infecting the wasp Lysiphlebus fabarum, a parasitoid of aphids. This virus, tentatively named “Lysiphlebus fabarum virus” (LysV), was discovered in transcriptome sequences of wasps from an experimental evolution study in which the parasitoids were allowed to adapt to aphid hosts (Aphis fabae) with or without resistance-conferring endosymbionts. Based on phylogenetic analyses of the viral RNA-dependent RNA polymerase (RdRp), LysV belongs to the Iflaviridae family in the order of the Picornavirales, with the closest known relatives all being parasitoid wasp-infecting viruses. We developed an endpoint PCR and a more sensitive qPCR assay to screen for LysV in field samples and laboratory lines. These screens verified the occurrence of LysV in wild parasitoids and identified the likely wild-source population for lab infections in Western Switzerland. Three viral haplotypes could be distinguished in wild populations, of which two were found in the laboratory. -
Dinocampus Coccinellae (Hymenoptera: Braconidae) Utilizes Both Coccinellini and Chilocorini (Coleoptera: Coccinellidae: Coccinellinae) As Hosts in Kashmir Himalayas
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 332–338, 2018 http://www.eje.cz doi: 10.14411/eje.2018.033 ORIGINAL ARTICLE Dinocampus coccinellae (Hymenoptera: Braconidae) utilizes both Coccinellini and Chilocorini (Coleoptera: Coccinellidae: Coccinellinae) as hosts in Kashmir Himalayas AMIR MAQBOOL1, IMTIAZ AHMED 2, PIOTR KIEŁTYK 3 and PIOTR CERYNGIER 3 1 Department of Zoology, Government College for Women, M.A. Road Srinagar – 190001, Jammu and Kashmir, India; e-mail: [email protected] 2 P.G. Department of Zoology, University of Kashmir, Hazratbal Srinagar – 190006, Jammu and Kashmir, India; e-mail: [email protected] 3 Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland; e-mails: [email protected], [email protected] Key words. Hymenoptera, Braconidae, Dinocampus coccinellae, Coleoptera, Coccinellidae, Oenopia conglobata, Priscibrumus uropygialis, parasitoid, host selection, host suitability Abstract. Dinocampus coccinellae is a parasitoid wasp usually parasitizing ladybird beetles of the tribe Coccinellini. A fi eld survey conducted between March and November 2016 revealed three hosts of this parasitoid in the Srinagar district of the Indian state of Jammu and Kashmir: two members of the Coccinellini (Oenopia conglobata and Coccinella undecimpunctata) and one of the Chi- locorini (Priscibrumus uropygialis). Proportion of the latter (atypical) host that were parasitized was 0.09 and intermediate between that recorded for C. undecimpunctata (0.06) and O. conglobata (0.14). A series of laboratory experiments revealed that while a member of Coccinellini (O. conglobata) was more often attacked by D. coccinellae than a member of Chilocorini (P. -
Coleoptera, Chrysomelidae) Described by Carl Peter Thunberg
European Journal of Taxonomy 499: 1–42 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.499 www.europeanjournaloftaxonomy.eu 2019 · Bezděk J. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:A50C1B67-2795-45D2-86EE-0A60637A4D1D Annotated review of Cryptocephalinae (Clytrini), Synetinae and part of Galerucinae (Coleoptera, Chrysomelidae) described by Carl Peter Thunberg Jan BEZDĚK Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic. Email: [email protected] urn:lsid:zoobank.org:author:668F3A35-3E6E-40F3-9F06-356EEB50E45F Abstract. The taxa of Cryptocephalinae (Clytrini), Synetinae and part of Galerucinae introduced by Carl Peter Thunberg are reviewed based on the examination of primary type specimens deposited in the Museum of Evolution, Uppsala University. The following taxonomic changes are proposed: Coptocephala unifasciata unifasciata (Scopoli, 1763) = Cryptocephalus melanocephalus Thunberg, 1787 syn. nov.; Melitonoma decemnotata (Thunberg, 1787) comb. nov. (from Cryptocephalus Geoffroy, 1762); Miopristis flexuosa (Thunberg, 1821) = Miopristis namaquensis Medvedev, 1993 syn. nov.; Protoclytra (Lacordairella) taeniata (Thunberg, 1821) comb. nov. (from Camptolenes Chevrolat, 1836) = Camptolenes fastuosa (Lacordaire, 1848) syn. nov.; Smeia undata (Thunberg, 1821) comb. nov. (from Miopristis Lacordaire, 1848) = Smeia virginea (Lacordaire, 1848) syn. nov. = Melitonoma pictipennis Jacoby, 1898 syn. nov.; Teinocera catenata (Thunberg, 1821) comb. nov. (from Miopristis) = Teinocera subclathrata (Lacordaire, 1848) syn. nov.; Exosoma lusitanica (Linnaeus, 1767) = Crioceris haemorrhoa Thunberg, 1827 syn. nov.; Megalognatha festiva (Fabricius, 1781) = Crioceris virens Thunberg, 1827 syn. nov.; Monolepta bioculata (Fabricius, 1781) = Cryptocephalus bioculatus Thunberg, 1827 syn. nov.; Monolepta melanogaster (Wiedemann, 1823) = Cryptocephalus capensis Thunberg, 1827 syn. -
Subfamily Cryptocephalinae
Subfamily Cryptocephalinae Adapted and updated from Joy (1932). A Practical Handbook of British Beetles. Image Credits: The images of leaf beetles in this document are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. Creative Commons. Mike Hackston © 2014, adapted from Joy (1932) Checklist from the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff. (available from www.coleopterist.org.uk/checklist.htm). Currently accepted names are written in bold italics, synonyms in italics. Tribe CLYTRINI Kirby, 1837 Genus LABIDOSTOMIS Dejean, 1836 tridentata (Linnaeus, 1758) Genus CLYTRA Laicharting, 1781 laeviuscula Ratzeburg, 1837 quadripunctata (Linnaeus, 1758) Genus SMARAGDINA affinis (Illiger, 1794) Tribe CRYPTOCEPHALINI Gyllenhal, 1813 Genus CRYPTOCEPHALUS Geoffroy, 1762 aureolus Suffrian, 1847 biguttatus (Scopoli, 1763) bilineatus (Linnaeus, 1767) bipunctatus (Linnaeus, 1758) coryli (Linnaeus, 1758) decemmaculatus (Linnaeus, 1758) exiguus Schneider, 1792 frontalis Marsham, 1802 fulvus (Goeze, 1777) hypochaeridis (Linnaeus, 1758) labiatus (Linnaeus, 1761) moraei (Linnaeus, 1758) nitidulus Fabricius, 1787 parvulus Müller, O.F., 1776 primarius Harold, 1872 punctiger Paykull, 1799 pusillus Fabricius, 1777 querceti Suffrian, 1848 sexpunctatus (Linnaeus, 1758) violaceus Laicharting, 1781 Creative Commons. Mike Hackston © 2014, adapted from Joy (1932) Subfamily Cryptocephalinae Keys to genus and species adapted from Joy (1932) by Mike Hackston 1 Antennae with segments 7-10 at least one and a half times as long as broad; antennae not thickened towards apex. Head hidden by pronotum when viewed from above. Tribe Cryptocephalini. ........... .......... Genus Cryptocephalus 20 species on the British list, many of them very rare and some are listed as Priority Species for Biodiversity Action Plans. Only one species is common.