Dinocampus Coccinellae (Hymenoptera: Braconidae) Utilizes Both Coccinellini and Chilocorini (Coleoptera: Coccinellidae: Coccinellinae) As Hosts in Kashmir Himalayas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coleomegilla Maculata (Degeer) Predation on Eggs of Colorado Potato Beetle, Leptinotarsa Decemlineata (Say)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1989 Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say). Ruth V. Hazzard University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Hazzard, Ruth V., "Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say)." (1989). Masters Theses 1911 - February 2014. 3055. Retrieved from https://scholarworks.umass.edu/theses/3055 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE May 1989 Department of Entomology COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Approved as to style and content by: David N. Ferro, Chairperson of Committee Jo^epl/ S. Elkinton, Member ACKNOWLEDGMENTS I am grateful to Dave Ferro for keeping the door to his office always open for me, and thereby opening the door to the profession of Entomology. Special thanks to Roy Van Driesche and Joe Elkinton for their assistance in this work, and to all of my professors for their generosity in teaching. I appreciate the help of Buddy, Tuan and Jennifer in counting eggs and feeding beetles, which made these experiments possible. -
HYMENOPTERA: BRACONIDAE: EUPHORINAE)* by SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
CORE Metadata, citation and similar papers at core.ac.uk Provided by MUCC (Crossref) A NEW MEXICAN GENUS AND SPECIES OF DINOCAMPINI WITH SERRATE ANTENNAE (HYMENOPTERA: BRACONIDAE: EUPHORINAE)* BY SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 The cosmopolitan braconid subfamily Euphorinae (sensu Shaw 1985, 1987, 1988) comprises 36 genera of koinobiont endoparasi- toids, which parasitize the adult stages of holometabolous insects or nymphs and adults of hemimetabolous insects (Muesebeck 1936, 1963; Shenefelt 1980; Loan 1983; Shaw 1985, 1988). Occasionally the parasitoids of holometabolous insects will oviposit into larvae as well as adults (Smith, 1960; David & Wilde, 1973; Semyanov, 1979), but this only occurs where larvae are ecologically coincident with adults, living and feeding on the same plants (Tobias, 1966). Obrycki et al. (1985) found that Dinocampus coccinellae (Schrank) will oviposit into all larval instars, and pupae, as well as adults; however, the highest percentage of successful parasitization occurred when adults were attacked. Only a few papers have discussed euphorines of Mexico in particular (Muesebeck 1955; Shaw 1987). The euphorine tribe Dinocampini was defined by Shaw (1985, 1987, 1988) to comprise three genera with ocular setae, antennal scape three times longer than wide, and labial palpus reduced to two segments. As far as is known, members of the tribe Dinocampini parasitize adult beetles; Dinocampus Foerster parasitizes Coccinel- lidae (Shenefelt 1980) and Ropalophorus Curtis parasitizes Scolyti- dae (Shenefelt 1960, Shaw 1988). The hosts of the third included genus, Centistina Enderlein, are not known. Because these genera are known only from females (Balduf 1926; Shenefelt 1960), it seems possible that females of the entire tribe are thelyotokous, reproduc- ing parthenogenetically and producing only female progeny. -
Rearing of Parasitoid Braconid Wasp Dinocampus Coccinellae in a Simplified Tritrophic System
Bulletin of Insectology 71 (2): 287-293, 2018 ISSN 1721-8861 Rearing of parasitoid braconid wasp Dinocampus coccinellae in a simplified tritrophic system Santolo FRANCATI Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Italy Abstract Mass-rearing of beneficial arthropods often requires a multitrophic system for the rearing of entomophagous species. The use of artificial diets can facilitate this work by simplifying the number of elements in the system. Rearing Dinocampus coccinellae (Schrank) (Hymenoptera Braconidae), a parasitoid of different ladybird species, requires four elements: plants where the prey is reared, prey (i.e. aphids), hosts that feed on that prey (such as ladybirds) and the said parasitoids. This study attempted to simplify this rearing system by feeding the host, for a part of its life, with an artificial diet. A series of life history parameters was meas- ured in 3 generations of parasitoid rearing. Results show that the host’s food, parasitoid generation, or interaction between these two factors, does not affect the yield of D. coccinellae adults. However, the time of development became longer and the adult lifespan (of second generation) became shorter with artificial food. Overall, the data seems to suggest that it is possible to simplify a multitrophic system without great consequences on the performance of parasitoids, if the nutritional needs of the species are supported. Key words: Mass-rearing, multitrophic system, Harmonia axyridis, Ephestia kuehniella, artificial diet. Introduction cial diets are less nutritious than the natural prey or hosts (Grenier, 2009), then their quality as biological The mass-rearing and release of beneficial arthropods control agents decreases (Grenier and De Clercq, 2003; are the fundamentals of augmentative biological control Riddick, 2009). -
A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus Fabarum: Genomic Structure, Prevalence, and Transmission
viruses Article A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus fabarum: Genomic Structure, Prevalence, and Transmission 1,2, , 1,2 1,2, Martina N. Lüthi * y , Christoph Vorburger and Alice B. Dennis z 1 Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; [email protected] (C.V.); [email protected] (A.B.D.) 2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland * Correspondence: [email protected] Current address: Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland. y Current address: Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse z 24–25, 14476 Potsdam, Germany. Received: 17 November 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: We report on a novel RNA virus infecting the wasp Lysiphlebus fabarum, a parasitoid of aphids. This virus, tentatively named “Lysiphlebus fabarum virus” (LysV), was discovered in transcriptome sequences of wasps from an experimental evolution study in which the parasitoids were allowed to adapt to aphid hosts (Aphis fabae) with or without resistance-conferring endosymbionts. Based on phylogenetic analyses of the viral RNA-dependent RNA polymerase (RdRp), LysV belongs to the Iflaviridae family in the order of the Picornavirales, with the closest known relatives all being parasitoid wasp-infecting viruses. We developed an endpoint PCR and a more sensitive qPCR assay to screen for LysV in field samples and laboratory lines. These screens verified the occurrence of LysV in wild parasitoids and identified the likely wild-source population for lab infections in Western Switzerland. Three viral haplotypes could be distinguished in wild populations, of which two were found in the laboratory. -
Corn Earworm, Helicoverpa Zea (Boddie) (Lepidoptera: Noctuidae)1 John L
EENY-145 Corn Earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)1 John L. Capinera2 Distribution California; and perhaps seven in southern Florida and southern Texas. The life cycle can be completed in about 30 Corn earworm is found throughout North America except days. for northern Canada and Alaska. In the eastern United States, corn earworm does not normally overwinter suc- Egg cessfully in the northern states. It is known to survive as far north as about 40 degrees north latitude, or about Kansas, Eggs are deposited singly, usually on leaf hairs and corn Ohio, Virginia, and southern New Jersey, depending on the silk. The egg is pale green when first deposited, becoming severity of winter weather. However, it is highly dispersive, yellowish and then gray with time. The shape varies from and routinely spreads from southern states into northern slightly dome-shaped to a flattened sphere, and measures states and Canada. Thus, areas have overwintering, both about 0.5 to 0.6 mm in diameter and 0.5 mm in height. overwintering and immigrant, or immigrant populations, Fecundity ranges from 500 to 3000 eggs per female. The depending on location and weather. In the relatively mild eggs hatch in about three to four days. Pacific Northwest, corn earworm can overwinter at least as far north as southern Washington. Larva Upon hatching, larvae wander about the plant until they Life Cycle and Description encounter a suitable feeding site, normally the reproductive structure of the plant. Young larvae are not cannibalistic, so This species is active throughout the year in tropical and several larvae may feed together initially. -
Evaluation of Natural Enemies of the European Corn Borer, Ostrinia Nubilalis (Lepidoptera: Pyralidae) Mpho Wycliffe Hop Ofolo Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 Evaluation of natural enemies of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae) Mpho Wycliffe hoP ofolo Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Phoofolo, Mpho Wycliffe, "Evaluation of natural enemies of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae) " (1997). Retrospective Theses and Dissertations. 12231. https://lib.dr.iastate.edu/rtd/12231 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fihns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, \^e others may be from any of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproductioiL In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Apanteles Machaeralis Wilkinson (Hymenoptera: Braconidae) to Determine Its Biology When Diaphania Indica (Lepidoptera: Pyralidae) Is Its Host
Proc. Indian Acad. Sci. (Anim. Sci.), Vol. 99, No.5, September 1990, pp. 353-362. © Printed in India. Biology of ApanteJes machaeralis Wilki~on (Hymenoptera: Braconidae) a parasite of Disphsni« indica (Saunders) (Lepidoptera: Pyralidae) CLEMENT PETER and B V DAVID Fredrick Institute of Plant Protection and Toxicology, Padappai 601301, India MS received 11 December 1989;revised 16 June 1990 Abstract. Studies were conducted on the endoparasite Apanteles machaeralis Wilkinson (Hymenoptera: Braconidae) to determine its biology when Diaphania indica (Lepidoptera: Pyralidae) is its host. Eggs were deposited in host larvae and increased greatly in size before hatching. The first instar larva was very active with functional mandibles, whereas the second stage larva was quiescent. The third instar larva spins its cocoon outside the body of the dead host. Mean development time from egg to adult was 12·63 days at 29·25± 1·82°e and 59-{j6% RH. There is no preoviposition period. The sex ratio was 1: 1·22(males/females). Mean adult longevity was not significantly different for males (9,31 days) and females (11,68 days). Keywords. Apanteles machaeralis; biological control; biology. 1. Introduction The pumpkin caterpillar, Diaphania indica (Saunders) has been reported from several parts of India and other regions of the world causing damage to various cucurbitaceous plants. Patel and Kulkamy (1956) have conducted detailed studies on the biology of this insect on Coccinia grandis (L.) Voight in Gujarat. However literature on the natural enemies of D. indica is very meagre. During the course of the studies on the natural biological control of this insect pest a solitary endoparasite, Apanteles machaeralis Wilkinson was reared as a major parasite of D. -
Coleoptera: Coccinellidae) in the Laboratory
Scientific Notes 85 DEVELOPMENTAL TIME, REPRODUCTION, AND FEEDING OF TWO SUBSPECIES OF COLEOMEGILLA MACULATA (COLEOPTERA: COCCINELLIDAE) IN THE LABORATORY SILVIA I. RONDON1, JAMES F. PRICE2 AND DANIEL J. CANTLIFFE3 1Oregon State University, Crop and Soil Sciences, Hermiston Agricultural Research and Extension Center P.O. Box 105, Hermiston, OR 97838 2University of Florida, Institute of Food and Agriculture, Gulf Coast Research and Education Center 14765 CR 672, Wimauma, FL 33598 3University of Florida, Institute of Food and Agriculture, Horticultural Sciences Department P.O. Box 110690, Gainesville, FL 32611 Coccinellids (lady beetles, lady bugs or ladybird In Florida, there has been an increasing inter- beetles) have been used in biological control pro- est from the biological control industry to intro- grams because of their ability to prey on economi- duce C. m. lengi (non-native), which is thought to cally important pests such as aphids (Hagen & Van have a greater reproductive capability, a highly den Bosch 1968; Hagen 1974; Frazer 1988; Rondon attractive biological characteristic desired by pro- et al. 2004), whiteflies (Hoelmer et al. 1994) and ducers of beneficials, than C. m. fuscilabris (na- mites (Chazeau 1985; Rondon et al. 2004) on maize, tive) (Griffin & Yeargan 2002). However, concerns Zea mays L. (Kieckhefer & Elliot 1990), alfalfa, regarding the possibility of cross genetic contam- Medicago sativa L. (Giles et al. 1994), and potato, ination between C. m. fuscilabris and C. m. lengi Solanum tuberosum L. (Groden et al. 1990; Hilbeck prevented the introduction (Peres 2000). Studies & Kennedy 1996). Lady beetles are probably the by Peres & Hoy (2002) indicated that there was a most visible and well known beneficial predatory in- reproductive near incompatibility between the sects with over 450 species found in North America subspecies during the first and second genera- (Gordon 1985). -
Nine-Spotted Lady Beetle Coccinella Novemnotata
COSEWIC Assessment and Status Report on the Nine-spotted Lady Beetle Coccinella novemnotata in Canada ENDANGERED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Nine-spotted Lady Beetle Coccinella novemnotata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 57 pp. (http://www.registrelep-sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC would like to acknowledge Paul Grant for writing the status report on the Nine-spotted Lady Beetle (Coccinella novemnotata) in Canada, prepared under contract with Environment Canada. This status report and was overseen and edited by Jennifer Heron, Co-chair of the COSEWIC Arthropods Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Coccinelle à neuf points (Coccinella novemnotata) au Canada. Cover illustration/photo: Nine-spotted Lady Beetle — Photo by John Acorn. Her Majesty the Queen in Right of Canada, 2016. Catalogue No. CW69-14/731-2016E-PDF ISBN 978-0-660-05550-3 COSEWIC Assessment Summary Assessment Summary – May 2016 Common name Nine-spotted Lady Beetle Scientific name Coccinella novemnotata Status Endangered Reason for designation This species was once common and broadly distributed through southern Canada, from Vancouver Island through the prairies to southern Québec. -
Evolutionary Perspectives on Myrmecophily in Ladybirds
Hindawi Publishing Corporation Psyche Volume 2012, Article ID 591570, 7 pages doi:10.1155/2012/591570 Review Article Evolutionary Perspectives on Myrmecophily in Ladybirds Amelie´ Vantaux,1 Olivier Roux,2 Alexandra Magro,3, 4 and Jer´ omeˆ Orivel5 1 Entomology Laboratory, Zoological Institute, Catholic University of Leuven, Naamsestraat 59, Box 2466, 3000 Leuven, Belgium 2 Institut de Recherche pour le D´eveloppement, UMR MiVEGEC-Maladies Infectieuses et Vecteurs Ecologie,´ G´en´etique, Evolution´ et Controle,ˆ Antenne de Bobo-Dioulasso, 01 BP 171, Bobo Dioulasso 01, Burkina Faso 3 CNRS, UMR EDB-Evolution et Diversit´e Biologique, 118 Route de Narbonne, 31062 Toulouse, France 4 ENFA, UMR EDB-Evolution et Diversit´e Biologique, Universit´e de Toulouse, 2 Route de Narbonne, 31320 Castanet Tolosan, France 5 CNRS, UMR EcoFoG-Ecologie des Forˆets de Guyane, Campus Agronomique, BP 316, 97379 Kourou Cedex, France Correspondence should be addressed to Amelie´ Vantaux, [email protected] Received 4 October 2011; Accepted 4 December 2011 Academic Editor: Volker Witte Copyright © 2012 Amelie´ Vantaux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Myrmecophiles are species that usually have developed specialized traits to cope with the aggressiveness of ants enabling them to live in their vicinity. Many coccinellid species are predators of Hemiptera; the latter is also often protected by ants. Therefore these ladybirds frequently interact with ants, and some species have become myrmecophilous. In this paper, we aim to provide an overview of the evolution of myrmecophilous traits in ladybirds. -
Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research
G C A T T A C G G C A T genes Review Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research Colleen A. Mangold 1,2 and David P. Hughes 1,2,3,* 1 Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA; [email protected] 2 Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA 3 Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA * Correspondence: [email protected] Abstract: Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communica- tion on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune Citation: Mangold, C.A.; Hughes, communication. -
Population Structure of a Predatory Beetle: the Importance of Gene Flow for Intertrophic Level Interactions
Heredity 72 (1994) 228—236 Received 7 July 1993 Genetical Society of Great Britain Population structure of a predatory beetle: the importance of gene flow for intertrophic level interactions MOSHE COLL*, LAURA GARCIA DE MENDOZA & GEORGE K. RODERICKt Department of Entomology, University of Maryland, College Park, MD 20742, U.S.A. Migrationand gene flow of natural enemies play an important role in the stability of predator—prey interactions and community organization in both natural and managed systems. Yet, relative to that of their herbivorous insect prey, the genetic structure of natural enemy populations has been little studied. We present evidence that populations of the predatory coccinellid beetle Coleomegilla maculata (Coleoptera: Coccinellidae), are not genetically subdivided and that levels of gene flow among these populations are extremely high. Furthermore, in the same geographical area, gene flow of C. maculata was significantly (one order of magnitude) greater than that of an abundant prey species, the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). The high mobility of this natural enemy relative to the insect herbivores on which it feeds may contribute to its effectiveness as a biological control agent in agricultural systems. Keywords:allozyme,biological control, electrophoresis, gene flow, metapopulation, natural enemies. Introduction Despite the recognized importance of mobility of natural enemies, little is known about their population Thegenetic structure of populations is a function of structure, especially the amount of gene flow their spatial arrangement and amount of gene flow (Roderick, 1992) and dispersal (CoIl, 1991) among among them. The extent of gene flow will determine field populations. This lack of information stands in not only the potential for populations to diverge gene- contrast to the studies of the genetic structure of herbi- tically but will also influence local population vorous insect populations in both natural (Slatkin, dynamics.