Corn Earworm, Helicoverpa Zea (Boddie) (Lepidoptera: Noctuidae)1 John L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Old World Bollworm Management Program Puerto Rico Environmental Assessment, September 2015
United States Department of Agriculture Old World Bollworm Marketing and Regulatory Management Program Programs Animal and Plant Health Inspection Service Puerto Rico Environmental Assessment September 2015 Old World Bollworm Managment Program Puerto Rico Environmental Assessment September 2015 Agency Contact: Eileen Smith Pest Detection and Emergency Programs Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 134 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. -
Bt Resistance Implications for Helicoverpa Zea (Lepidoptera
Environmental Entomology, XX(X), 2018, 1–8 doi: 10.1093/ee/nvy142 Forum Forum Bt Resistance Implications for Helicoverpa zea (Lepidoptera: Noctuidae) Insecticide Resistance Downloaded from https://academic.oup.com/ee/advance-article-abstract/doi/10.1093/ee/nvy142/5096937 by guest on 26 October 2018 Management in the United States Dominic D. Reisig1,3 and Ryan Kurtz2 1Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC 27962, 2Agricultural & Environmental Research, Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, and 3Corresponding author, e-mail: [email protected] Subject Editor: Steven Naranjo Received 19 June 2018; Editorial decision 27 August 2018 Abstract Both maize and cotton genetically engineered to express Bt toxins are widely planted and important pest management tools in the United States. Recently, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has developed resistance to two toxin Bt maize and cotton (Cry1A and Cry2A). Hence, growers are transitioning to three toxin Bt cotton and maize that express both Cry toxins and the Vip3Aa toxin. H. zea susceptibility to Vip3Aa is threatened by 1) a lack of availability of non-Bt refuge crop hosts, including a 1–5% annual decline in the number of non-Bt maize hybrids being marketed; 2) the ineffectiveness of three toxin cultivars to function as pyramids in some regions, with resistance to two out of three toxins in the pyramid; and 3) the lack of a high dose Vip3Aa event in cotton and maize. We propose that data should be collected on current Cry-resistant H. -
The Seasonal Abundance and Impact of Predatory Arthropods on Helicoverpa Species in Australian Cotton Fields
The Seasonal Abundance and Impact of Predatory Arthropods on Helicoverpa Species in Australian Cotton Fields by John Newton Stanley B.Rur. Sc. (University of New England) A thesis submitted for the degree of Doctor of Philosophy from the University of New England Department of Agronomy and Soil Science September 1997 Many Thanks to the Following: Associate Professor Peter Gregg, who, as sole supervisor, provided a broad field of opportunities, as well as cotton, for the discovery of entomological things. Thank you for your guidance and support. Mr. Richard Browne, of Auscott Pty. Ltd., and Ben and Dave Coulton, of Coulton Farming Ltd. for allowing me access to their crops and for adjusting their cultural practices to accommodate experimental designs. Particular thanks to Terry Haynes (Senior Agronomist; Auscott Pty. Ltd. Moree) for discussions on pest management and generously supplying assistance at critical times. The taxonomists who identified material for the insect survey. Mr. L. Bauer (Thysanoptera) Dr. A. Calder (Coleoptera) Dr. M. Carver (Homoptera and Trichogrammatidae) Dr. D. H. Colless (Diptera) Dr. M. J. Fletcher (Cicadellidae) Dr. M. R. Gray (Aracnida) Dr. M. B. Malipatil (Hemiptera) Dr. I. D. Naumann (Hymenoptera) Dr. T. R. New (Neuroptera) Dr. T. A. Weir (Coleoptera) The people who provided technical assistance: Holly Ainslie, Dr. Steven Asante, Doreen Beness, Laura Bennett, Samantha Browne, Dr. Mark Coombs, Peter Foreman, Jacqueline Prudon, Sally Schwitzer, Kelly Stanley, Anita Stevenson, Donald Wheatley, and Richard Willis. Dr. Steven Trowell for guidance using serological methods and to Dr. Anne Bourne for her statistical significance. Mr. Robert Gregg for accomodating my family at Tyree whilst sampling in Moree. -
New Moths from Texas (Noctuidae, Tortricidae)
1968 Joltrnal of the Lepidopterists' Societu 133 NEW MOTHS FROM TEXAS (NOCTUIDAE, TORTRICIDAE) ANDRE BLANCHARD 3023 Underwood, Houston, Texas As a retirement hobby, I decided, six years ago, to catalog the moths of Texas. My wife and I have been collecting moths all over Texas for the last four years. As the work progressed, I came to realize that I may have to settle, more modestly, for a "Contributions Toward A Catalog of the Moths of Texas." The number of species in my collection which had apparently never been taken in Texas is quite large, and the number of those which seem to be new to science, particularly from the mountain ranges and desert areas of West Texas, is much larger than I ever expected. I have been fortunate in interesting several specialists in describing some of these new species: Dr. C. L. Hogue (196S), Mr. McElvare ( 1966), Dr. E. L. Todd (1966) have described three. Difficult cases are now and, in the future, will be submitted to experts. I have de scribed the male of a fourth species (1966), the female of which was described by Dr. F. H. Hindge (1966). While getting more material for my intcnded catalog, I shall describe as many of the new species as I can name without becoming guilty of adding to the confusion which already exists in some genera. In the present paper, I describe six new noctuids and one tortricid species. All types were collected by A. &. M. E. Blanchard. Acronicta vallis cola Blanchard, new species (PI. I, fig. J; PI. -
GMS News Autumn 2019 Weeks 28-36
GMS News Autumn 2019 Weeks 28-36 Contents Editorial Norman Lowe 1 Overview GMS 2019 4th Quarter Evan Lynn 2 My move to the “Dark Side” David Baker 12 Another snippet! (VC73) Rhian & Adam Davies 17 Emperors, admirals and chimney sweepers, a book review Peter Major 15 GMS collaboration with Cairngorms Connect Stephen Passey 22 How and when to release trapped moths? Norman Lowe 23 Garden Moth Scheme South Wales Conference Norman Lowe 23 Clifden Nonpareil Michael Sammes 24 Tailpiece Norman Lowe 24 Lepidopteran Crossword No. 12 Nonconformist 25 Communications & links 26 GMS sponsors 27 Editorial – Norman Lowe Welcome to the final Garden Moth Scheme Quarterly Report of 2019. We have a bumper Christmas edition for you this time with a good variety of articles from lots of different contributors. Of course these always represent our contributors’ personal views, with which you might agree or disagree. And if so, let’s hear from you! We start as always with Evan’s roundup of the quarter’s results comparing moth catches with weather conditions as they occurred throughout the period. This time he has chosen to compare Ireland and Scotland, the northern and western extremities of our study area. They are also our two largest “regions” (OK I know they (and Wales) don’t like to be called regions but I can’t think of a better alternative) and the ones with the largest numbers of vice counties with no GMS recorders. I’ll return to this theme in my Tailpiece. Evan has also focused on the Setaceous Hebrew Character, a species that seems to vary possibly more than any other from place to place. -
A New Macrolepidopteran Moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican Amber
ZooKeys 965: 73–84 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.965.54461 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber Weiting Zhang1,2, Chungkun Shih3,4, YuHong Shih5, Dong Ren3 1 Hebei GEO University, 136 Huaiandonglu, Shijiazhuang 050031, China 2 State Key Laboratory of Pal- aeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China 3 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisan- huanbeilu, Haidian District, Beijing 100048, China 4 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA 5 Laboratorio Dominicano De Ambar Y Gemas, Santo Domingo, Dominican Republic Corresponding author: Weiting Zhang ([email protected]) Academic editor: Gunnar Brehm | Received 19 May 2020 | Accepted 12 August 2020 | Published 3 September 2020 http://zoobank.org/05E273DB-B590-42D1-8234-864A787BE6A0 Citation: Zhang W, Shih C, Shih YH, Ren D (2020) A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. ZooKeys 965: 73–84. https://doi.org/10.3897/zookeys.965.54461 Abstract A new genus and species of fossil moth, Miogeometrida chunjenshihi Zhang, Shih & Shih, gen. et sp. nov., assigned to Geometridae, is described from Miocene Dominican amber dating from 15–20 Mya. The new genus is characterized by the forewing without a fovea, R1 not anastomosing with Sc, no areole formed by veins R1 and Rs, R1 and Rs1 completely coincident, M2 arising midway between M1 and M3, anal veins 1A and 2A fused for their entire lengths; and the hind wing with Rs running close to Sc + R1 and M2 absent. -
Coleomegilla Maculata (Degeer) Predation on Eggs of Colorado Potato Beetle, Leptinotarsa Decemlineata (Say)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1989 Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say). Ruth V. Hazzard University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Hazzard, Ruth V., "Coleomegilla maculata (DeGeer) predation on eggs of Colorado potato beetle, Leptinotarsa decemlineata (Say)." (1989). Masters Theses 1911 - February 2014. 3055. Retrieved from https://scholarworks.umass.edu/theses/3055 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE May 1989 Department of Entomology COLEOMEGILLA MACULATA (DEGEER) PREDATION ON EGGS OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY) A Thesis Presented by RUTH V. HAZZARD Approved as to style and content by: David N. Ferro, Chairperson of Committee Jo^epl/ S. Elkinton, Member ACKNOWLEDGMENTS I am grateful to Dave Ferro for keeping the door to his office always open for me, and thereby opening the door to the profession of Entomology. Special thanks to Roy Van Driesche and Joe Elkinton for their assistance in this work, and to all of my professors for their generosity in teaching. I appreciate the help of Buddy, Tuan and Jennifer in counting eggs and feeding beetles, which made these experiments possible. -
Data Sheet on Helicoverpa
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Helicoverpa zea IDENTITY Name: Helicoverpa zea (Boddie) Synonyms: Heliothis zea (Boddie) Bombyx obsoleta Fab. Phalaena zea (Boddie) Heliothis umbrosus Grote Taxonomic position: Insecta: Lepidoptera: Noctuidae Common names: American bollworm, corn earworm, tomato fruitworm, New World bollworm (English) Chenille des épis du maïs (French) Amerikanischer Baumwollkapselwurm (German) Notes on taxonomy and nomenclature: The taxonomic situation is complicated and presents several problems. Hardwick (1965) reviewed the New World corn earworm species complex and the Old World African bollworm (Noctuidae), most of which had previously been referred to as a single species (Heliothis armigera or H. obsoleta), and pointed out that there was a complex of species and subspecies involved. Specifically he proposed that the New World H. zea (first used in 1955) was distinct from the Old World H. armigera on the basis of male and female genitalia. And he described the new genus Helicoverpa to include these important pest species, Some 80 or more species were formerly placed in Heliothis (sensu lato) and Hardwick referred 17 species (including 11 new species) to Helicoverpa on the basis of differences in both male and female genitalia. Within this new genus the zea group contains eight species, and the armigera group two species with three subspecies. See also Hardwick (1970). Because the old name of Heliothis for the pest species (four major pest species and three minor) is so well established in the literature, and since dissection of genitalia is required for identification, there has been resistance to the name change (e.g. -
Larval Protein Quality of Six Species of Lepidoptera (Saturniidaeo Sphingidae, Noctuidae)
Larval Protein Quality of Six Species of Lepidoptera (Saturniidaeo Sphingidae, Noctuidae) STEPHEN V. LANDRY,I GENE R. DEFOLIART,IANP MILTON L. SUNDE, University of Wisconsin, Madison, Wisconsin 53706 J. Econ. Entomol. 79; 600-604 (I98€) ABSTRACT Six lepidopteran species representing three families were evaluated for their potential use as protein supplements for poultry. Proximate and amino acid analyses were conducted on larval powders of each species. Larvae ranged from 49.4 to 58.1% crude protein on a dry-weight basis. Amino acid analysis indicated deficiencies in arginine, me- thionine, cysteine, and possibly lysine, when larvae are used in chick rations. In a chick- feeding trial with three of the species, however, these deffciencies were not substantiated: the average weight gained by chicks fed the lepidopteran-supplemented dlet did not differ significantly from that of.chicks fed a conventional corn/soybean control diet. LnprpoptBne ARE among the many species of in- by feeding trials on poultry (Ichhponani and Ma- sects that have played an important role in nutri- Iek 1971, Wijayasinghe and Rajaguru 1977). tion, especially in areas where human and domes- To determine and compare the protein quality tic animal populations are subject to chronic protein of a wider assortment of lepidopterous larvae, we deficiency (e.g., Bodenheimer 1951, Quin 1959, conducted proximate and amino acid analyses on Ruddle 1973, Conconi and Bourges 1977, Malaise larvae of six species representing three families. and Parent 1980, Conconi et al. 1984). Conconi et These included the cecropia moth, Hgalophora ce- al. (f9Sa), for example, listed 12 species in 8 fam- cropia (L.), and the promethea moth, Callosamia ilies that are gathered and consumed in Mexico. -
(Bacillus Thuringiensis) Maize
Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment Jérôme Cortet, Mathias Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, Bernard Lacroix, Christophe Sausse, Jacqueline Thompson, Paul Krogh To cite this version: Jérôme Cortet, Mathias Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, et al.. Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment. Soil Biology and Biochemistry, Elsevier, 2006, 38 (1), pp.195-199. 10.1016/j.soilbio.2005.04.025. hal-03218784 HAL Id: hal-03218784 https://hal.archives-ouvertes.fr/hal-03218784 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment Je´roˆme Cortet, Mathias N. Andersen, Sandra Caul, Bryan Griffiths, Richard Joffre, Bernard Lacroix, Christophe Sausse, Jacqueline Thompson, Paul Henning Krogh correspondance: [email protected] Abstract The effects of maize expressing the Bacillus thuringiensis Cry1Ab protein (Bt maize) on decomposition processes under three different European climatic conditions were assessed in the field. Farming practices using Bt maize were compared with conventional farming practices using near-isogenic non-Bt maize lines under realistic agricultural practices. -
Twenty-Five Pests You Don't Want in Your Garden
Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves. -
Bionomics of Bagworms (Lepidoptera: Psychidae)
ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.