Canonical Quantization

Total Page:16

File Type:pdf, Size:1020Kb

Canonical Quantization Phys540.nb 27 2 Canonical quantization 2.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 2.1.1.Lagrangian Lagrangian mechanics is a reformulation of classical mechanics. L = T - V (2.1) Here, the quantity L is called the Lagrangian, where T is the kinetic energy and V is the potential energy. For a pendulum, the kinetic energy is 2 1 ⅆθ 1 9 2 T = m r2 = m r θ (2.2) 2 ⅆt 2 and the potential is V $ - m g r cos 8 (2.3) And thus 9 1 9 2 L:8, 8; $ m r2 8 1 m g r cos 8 (2.4) 2 9 In general, a Lagrangian depends on coordinates (e.g. 8) and their corresponding velocities (e.g. 8) 9 9 9 L(q1, q2 < qn; q1, q2 <qn) (2.5) 9 where qi represent all coordinates in the systems and qi are the velocities. 2.1.2. Equation(s) of motion The equation of motion in Lagrangian mechanics is - =L =L 9 $ (2.6) -t =qi =qi For the pendulum example discussed above, - =L =L 9 $ (2.7) -t =8 =8 So 9 1 2 2 - =L - =T - = m r 8 - 9 .. 2 2 2 (2.8) 9 $ 9 $ 9 $ :m r 8; $ m r 8 -t =8 -t =8 -t =8 -t 28 Phys540.nb and =L =V =m g r cos 8 $ - $ $ -m g r sin8 (2.9) =8 =8 =8 As a result, the EOM is .. m r2 8 $ -m g r sin 8 (2.10) .. m r 8 $ -m g sin 8 (2.11) which recovers the second law of Newton: m a $ F (2.12) 2.1.3. Hamiltonian, canonical coordinates and canonical momenta From a Lagrangian described above, we can define one canonical momentum for every coordinate: =L pi $ 9 (2.13) =qi If the system has n coordinates, we will have n canonical momenta. If the coordinates are the usual 3D Cartesian coordinates, these momenta coincide with the “momentum” we usually used in Newton’s theory. If the coordinates that we used here are angles, then the momenta will be angular momenta L. Hamiltonian: H $ >pi qi - L $ T 1 V (2.14) H is a function of pi and qi For the pendulum example, 9 1 2 2 =L =L =T = m r 8 9 2 2 (2.15) p $ 9 $ 9 $ 9 $ 9 $ m r 8 =8 =8 =8 =8 9 Notice that 8 is just the angular velocity ". Here, this p is in fact m r ", i.e. the angular momentum. 9 9 1 9 2 H $ p 8 - L $ p 8 - m r 8 - m g r cos 8 (2.16) 2 9 9 Because p $ m r2 8, we can replace all 8 by p5m r2 p 1 p 2 p2 p2 p2 H $ p - m r2 - m g r cos 8 $ - - m g r cos 8 $ - m g r cos 8 (2.17) m r2 2 m r2 m r2 2 m r2 2 m r2 This Hamiltonian is indeed a function of p and 8 2.1.4. Canonical quantization In a quantum system, all physical observable are presented by quantum operators, including H, qi and pi. The relation between them remains the same as in classical mechanics. The only ingredient that we need to add here is the “uncertainty relation”: &qi, pj* $ ? 2 %i,j (2.18) &qi, qj* $ &pi, pj* $ 0 (2.19) i.e., we request a coordinate NOT to commute with its canonical momentum. The commutator is assumed to be a constant, ?2 for any canonical pair pi and qi. 2.1.5. Summary Step 1: Start from classical mechanics Step 2: Define coordinates Step 3: Find the canonical momentum for each coordinate Phys540.nb 29 Step 4: Write down the Hamiltonian Step 5: Require canonical commutation relation Example: for the example we considered above, we have only one coordinate and one momentum, and the Hamiltonian looks like p2 H $ - m g r cos q (2.20) 2 m r2 When we quantize this system, we turn everything into quantum operators @ @ p2 H $ - m g r cos q@ (2.21) 2 m r2 And we request &q@, p@* $ ? 2. Q: What is a cos function of a quantum operator? A: We use Taylor expansions x2 x4 cos x $ 1 - 1 1 < (2.22) 2 24 So q@ 2 q@ 4 cos q@ $ 1 - 1 1 < (2.23) 2 24 And thus @ @ @ p2 p2 m g r m g r H $ - m g r cos q@ $ - m g r 1 q@ 2 - q@ 4 1 < (2.24) 2 m r2 2 m r2 2 24 We know that a constant in energy is not important, so we can drop the constant part -m g r @ @ @ p2 p2 m g r m g r H $ - m g r cos q@ $ 1 q@ 2 - q@ 4 1 < (2.25) 2 m r2 2 m r2 2 24 The first two terms here are the Hamiltonian of a harmonic oscillator. And the rest part of the Hamiltonian is known as the non-harmonic part of the potential. 2.2. Creation and annihilation operators 2.2.1. Creation and annihilation operators. Define: 1 x qi - ? pi x A (2.26) ai $ 2 2 1 x qi 1 ? pi x (2.27) ai $ 2 2 A where x is some arbitrary (positive) real number. It is easy to prove that ai and ai are conjugate of each other, :aA;A $ a (2.28) A and it is easy to verify that Bai, ai C $ 1 30 Phys540.nb 1 1 x qi 1 ? pi x qi - ? pi x x A A A ai ai - ai ai $ Bai, ai C $ D , E $ 2 2 2 2 (2.29) x ? ? 1 ? -?F? 2 &qi, qi* 1 &pi, qi* - &qi, pi* 1 &pi, pi* $ - &qi, pi* $ $ 1 2 2 2 2 2 2 2 2x 2 2 More generally, we can prove that 1 if i $ j Ba , a AC $ % $ G (2.30) i j ij 0 if i / j For the example that we considered above, there is only one coordinate and one momentum, q and p, and thus, we only have one creation operator and one annihilation operator x q - 1 ? p x aA $ (2.31) 2 2 x q 1 1 ? p x a $ (2.32) 2 2 2.2.2. Vacuum For simplicity, from now on, we will only focus on the example that discussed above, but please keep in mind that all conclusions can be generalized easily to more complicated Hamiltonians. Here we make two assumptions: Assumption #1: there is one (and only one) quantum state such that a 0H $ 0 (2.33) We call this state the vacuum state. Assumption #2: The states 0〉, a† 0, a† a† 0, a† a† a† 0… form a complete basis of the Hilbert space. Comment: These assumptions turn out to be true for most cases that we study in quantum mechanics. 2.2.3. particle number operator Define particle number operator n $ aA a (2.34) 2.2.4. Hamiltonian: the harmonic part @ @ @ p2 p2 m g r m g r H $ - m g r cos q@ $ 1 q@ 2 - q@ 4 1 < (2.35) 2 m r2 2 m r2 2 24 Lets keep only the first two terms, and ignore all higher order terms of q@ p@ 2 m g r @ @ 2 H0 $ 1 q (2.36) 2 m r2 2 The part that we ignored are @ m g r @ % H $ - q4 1 < (2.37) 24 and H $ H0 1 % H For the harmonic part H0 p@ 2 m g r @ @ 2 H0 $ 1 q (2.38) 2 m r2 2 Phys540.nb 31 Because x q - 1 ? p x aA $ (2.39) 2 2 x q 1 1 ? p x a $ (2.40) 2 2 we know that 2 q $ :aA 1 a; (2.41) 2 x x 2 p $ ? :aA - a; (2.42) 2 Thus, 2 ? x 2 :aA - a; 2 2 p@ 2 m g r m g r 2 x 2 m g r 2 (2.43) @ @ 2 A A 2 A 2 H0 $ 1 q $ 1 :a 1 a; $ - :a - a; 1 :a 1 a; 2 2 2 2 m r 2 2 m r 2 2 x 4 m r 4 x Here :aA - a;2 $ :aA - a; :aA - a; $ aA aA - aA a - a aA 1 a a (2.44) and :aA 1 a;2 $ :aA 1 a; :aA 1 a; $ aA aA 1 aA a 1 a aA 1 a a (2.45) So x 2 m g r 2 x 2 m g r 2 @ A A A A H0 $ - 1 :a a 1 a a; 1 1 :a a 1 a a; (2.46) 4 m r2 4 x 4 m r2 4 x The first term here violate the particle conservation law, i.e. it doesn’t commute with the particle number operator. However, we can get ride of it by choosing the value of x, such that the first term vanish x 2 m g r 2 - 1 $ 0 (2.47) 4 m r2 4 x i.e. x2 $ m2 g r3 (2.48) x $ m2 g r3 $ m r g r (2.49) And thus, our Hamiltonian preserves the particle number, &H0, n* $ 0. x 2 m g r 2 x 2 m g r 2 @ A A A A H0 $ - 1 :a a 1 a a; 1 1 :a a 1 a a ; $ 4 m r2 4 x 4 m r2 4 x 2 m g r 2 2 g g 2 m r g r 1 :aA a 1 a aA; $ 1 :aA a 1 a aA; 2 (2.50) 4 m r 4 m r g r 4 r 4 r g aA a 1 a aA $ 2 r 2 Because Ba, aAC $ a aA - aA a $ 1, a aA $ aA a 1 1 and thus 32 Phys540.nb aA a 1 a aA aA a 1 aA a 1 1 2 aA a 1 1 1 @ A H0 $ 2 g5r $ 2 g5r $ 2 g5r $ 2 g5r a a 1 (2.51) 2 2 2 2 Notice that g5r $ " is actually the angular frequency of the harmonic oscillator, and aA a is in fact the particle number operator n we defined above @ 1 H0 $ 2 " n 1 (2.52) 2 We can understand this Hamiltonian as the following: (1) each of our fictitious particle has energy 2".
Recommended publications
  • Introduction to the Many-Body Problem
    INTRODUCTION TO THE MANY-BODY PROBLEM UNIVERSITY OF FRIBOURG SPRING TERM 2010 Dionys Baeriswyl General literature A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall 1963. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill 1971. G. D. Mahan, Many-Particle Physics, Plenum Press 1981. J. W. Negele and H. Orland, Quantum Many Particle Systems, Perseus Books 1998. Ph. A. Martin and F. Rothen, Many-Body Problems and Quantum Field Theory, Springer-Verlag 2002. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics, Oxford University Press 2004. Contents 1 Second quantization 2 1.1 Many-particlestates ......................... 2 1.2 Fockspace............................... 3 1.3 Creationandannihilationoperators . 5 1.4 Quantumfields ............................ 7 1.5 Representationofobservables . 10 1.6 Wick’stheorem ............................ 16 2 Many-boson systems 19 2.1 Bose-Einstein condensation in a trap . 19 2.2 TheweaklyinteractingBosegas. 20 2.3 TheGross-Pitaevskiiequation . 23 3 Many-electron systems 26 3.1 Thejelliummodel........................... 26 3.2 Hartree-Fockapproximation . 27 3.3 TheWignercrystal .......................... 28 3.4 TheHubbardmodel ......................... 29 4 Magnetism 34 4.1 Exchange ............................... 34 4.2 Magnetic order in the Heisenberg model . 36 5 Electrons and phonons 39 5.1 Theharmoniccrystal.. .. .. 39 5.2 Electron-phononinteraction . 41 5.3 Phonon-inducedattraction
    [Show full text]
  • Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model.
    [Show full text]
  • Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
    Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4.
    [Show full text]
  • Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
    Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles.
    [Show full text]
  • 1 the Basic Set-Up 2 Poisson Brackets
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016–2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical Mechanics, Chapter 14. 1 The basic set-up I assume that you have already studied Gregory, Sections 14.1–14.4. The following is intended only as a succinct summary. We are considering a system whose equations of motion are written in Hamiltonian form. This means that: 1. The phase space of the system is parametrized by canonical coordinates q =(q1,...,qn) and p =(p1,...,pn). 2. We are given a Hamiltonian function H(q, p, t). 3. The dynamics of the system is given by Hamilton’s equations of motion ∂H q˙i = (1a) ∂pi ∂H p˙i = − (1b) ∂qi for i =1,...,n. In these notes we will consider some deeper aspects of Hamiltonian dynamics. 2 Poisson brackets Let us start by considering an arbitrary function f(q, p, t). Then its time evolution is given by n df ∂f ∂f ∂f = q˙ + p˙ + (2a) dt ∂q i ∂p i ∂t i=1 i i X n ∂f ∂H ∂f ∂H ∂f = − + (2b) ∂q ∂p ∂p ∂q ∂t i=1 i i i i X 1 where the first equality used the definition of total time derivative together with the chain rule, and the second equality used Hamilton’s equations of motion. The formula (2b) suggests that we make a more general definition. Let f(q, p, t) and g(q, p, t) be any two functions; we then define their Poisson bracket {f,g} to be n def ∂f ∂g ∂f ∂g {f,g} = − .
    [Show full text]
  • Hamilton Description of Plasmas and Other Models of Matter: Structure and Applications I
    Hamilton description of plasmas and other models of matter: structure and applications I P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin [email protected] http://www.ph.utexas.edu/ morrison/ ∼ MSRI August 20, 2018 Survey Hamiltonian systems that describe matter: particles, fluids, plasmas, e.g., magnetofluids, kinetic theories, . Hamilton description of plasmas and other models of matter: structure and applications I P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin [email protected] http://www.ph.utexas.edu/ morrison/ ∼ MSRI August 20, 2018 Survey Hamiltonian systems that describe matter: particles, fluids, plasmas, e.g., magnetofluids, kinetic theories, . \Hamiltonian systems .... are the basis of physics." M. Gutzwiller Coarse Outline William Rowan Hamilton (August 4, 1805 - September 2, 1865) I. Today: Finite-dimensional systems. Particles etc. ODEs II. Tomorrow: Infinite-dimensional systems. Hamiltonian field theories. PDEs Why Hamiltonian? Beauty, Teleology, . : Still a good reason! • 20th Century framework for physics: Fluids, Plasmas, etc. too. • Symmetries and Conservation Laws: energy-momentum . • Generality: do one problem do all. • ) Approximation: perturbation theory, averaging, . 1 function. • Stability: built-in principle, Lagrange-Dirichlet, δW ,.... • Beacon: -dim KAM theorem? Krein with Cont. Spec.? • 9 1 Numerical Methods: structure preserving algorithms: • symplectic, conservative, Poisson integrators,
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable.
    [Show full text]
  • General Quantization
    General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37].
    [Show full text]
  • Chapter 7 Second Quantization 7.1 Creation and Annihilation Operators
    Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick's theorem. One-body operator in second quantization. Hartree- Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm- Dankoff Approximation (TDA). 7.1 Creation and annihilation operators In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are occupied and one can not place a particle there. In other words, the A-particle state j0i, with all levels hi occupied, is the ground state of the inert (frozen) double magic core. Above the FL all states are empty and, therefore, a particle can be created in one of the levels denoted by pi in the Figure. In Second Quantization one introduces the y j i creation operator cpi such that the state pi in the nucleus containing A+1 nucleons can be written as, j i y j i pi = cpi 0 (7.1) this state has to be normalized, that is, h j i h j y j i h j j i pi pi = 0 cpi cpi 0 = 0 cpi pi = 1 (7.2) from where it follows that j0i = cpi jpii (7.3) and the operator cpi can be interpreted as the annihilation operator of a particle in the state jpii. This implies that the hole state hi in the (A-1)-nucleon system is jhii = chi j0i (7.4) Occupation number and anticommutation relations One notices that the number y nj = h0jcjcjj0i (7.5) is nj = 1 is j is a hole state and nj = 0 if j is a particle state.
    [Show full text]
  • Arxiv:1809.04416V1 [Physics.Gen-Ph]
    Path integral and Sommerfeld quantization Mikoto Matsuda1, ∗ and Takehisa Fujita2, † 1Japan Health and Medical technological college, Tokyo, Japan 2College of Science and Technology, Nihon University, Tokyo, Japan (Dated: September 13, 2018) The path integral formulation can reproduce the right energy spectrum of the harmonic oscillator potential, but it cannot resolve the Coulomb potential problem. This is because the path integral cannot properly take into account the boundary condition, which is due to the presence of the scattering states in the Coulomb potential system. On the other hand, the Sommerfeld quantization can reproduce the right energy spectrum of both harmonic oscillator and Coulomb potential cases since the boundary condition is effectively taken into account in this semiclassical treatment. The basic difference between the two schemes should be that no constraint is imposed on the wave function in the path integral while the Sommerfeld quantization rule is derived by requiring that the state vector should be a single-valued function. The limitation of the semiclassical method is also clarified in terms of the square well and δ(x) function potential models. PACS numbers: 25.85.-w,25.85.Ec I. INTRODUCTION Quantum field theory is the basis of modern theoretical physics and it is well established by now [1–4]. If the kinematics is non-relativistic, then one obtains the equation of quantum mechanics which is the Schr¨odinger equation. In this respect, if one solves the Schr¨odinger equation, then one can properly obtain the energy eigenvalue of the corresponding potential model . Historically, however, the energy eigenvalue is obtained without solving the Schr¨odinger equation, and the most interesting method is known as the Sommerfeld quantization rule which is the semiclassical method [5–8].
    [Show full text]
  • SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
    SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions.
    [Show full text]