Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles.
[Show full text]