Assessment Manual: Heavy Minerals of Economic Importance

Total Page:16

File Type:pdf, Size:1020Kb

Assessment Manual: Heavy Minerals of Economic Importance Assessment Manual Heavy Minerals of Economic Importance Heavy Minerals of Economic Importance (Ilmenite and Leucoxene, Rutile, Zircon, Monazite and Xenotime, Kyanite, Sillimanite and Andalusite, Staurolite, Garnet, Chromite, Magnetite, Cassiterite, Columbite-Tantalite, Wolframite and Scheelite) HARALD ELSNER [218 p., 31 fig., 125 tab.] 3 Heavy minerals (ilmenite, leucoxene, rutile, zircon, monazite, xenotime, kyanite, sillimanite, andalusite, staurolite, garnet, chromite, magnetite, cassiterite, columbite- tantalite, wolframite, scheelite), genesis, deposits, quality, use, parameters, technological properties, occurrences, production, reserves [Heavy minerals of economic importance] A b s t r a c t : Usually, heavy minerals are not the first thing on the mind of working geologists in Germany. However, on a global scale, they are of crucial economic importance as non-metallic and metallic raw materials alike. Economic heavy mineral deposits are mainly located in tropical and sub-tropical countries. Heavy minerals are traded globally as bulk and bagged minerals. The economics of the various heavy minerals is the subject of this monograph. The group of heavy minerals described includes ilmenite and leucoxene, rutile, zircon, monazite and xenotime, kyanite, sillimanite and andalusite, staurolite, garnet, chromite, magnetite, cassiterite, columbite-tantalite, as well as wolframite and scheelite. The report starts with an outline of the ore genesis of heavy mineral deposits and how they are mined. It is followed by data on the mineralogy, petrography, chemistry and ore genesis of each of the heavy minerals, plus extensive information on their application, their uses in various products, and their potential substitutions by other materials. Background information, reserves and production data, as well as a selection of basic references, conclude each chapter. [Schwerminerale von wirtschaftlicher Bedeutung] Kurzfassung: Schwerminerale stehen nicht so sehr im Bewusstsein des in Deutschland tätigen Geologen. Weltweit sind sie als nichtmetallische aber auch metallische Mineralrohstoffe jedoch von großer wirtschaftlicher Bedeutung. Vor allem in Ländern der tropischen und subtropischen Zone finden sich bauwürdige Anreicherungen von Schwermineralen. Fast alle Schwerminerale werden weltweit und in großen Mengen gehandelt. Die wirtschaftliche Bedeutung der verschiedenen Schwerminerale ist Gegenstand dieser Monographie. Die Gruppe der hier beschriebenen Schwerminerale umfasst Ilmenit und Leukoxen, Rutil, Zirkon, Monazit und Xenotim, Disthen, Sillimanit und Andalusit, Staurolith, Granat, Chromit, Magnetit, Cassiterit, Columbit-Tantalit sowie Wolframit und Scheelit. Zu Beginn der Abhandlung steht ein Überblick über die Genese von Schwerminerallagerstätten und deren Abbau. Die einzelnen Schwerminerale werden danach getrennt mineralogisch, petrographisch, chemisch sowie lagerstättengenetisch beschrieben. Es folgen umfangreiche Informationen zur Verwendung der Minerale und der aus ihnen gewonnenen Produkte einschließlich der Möglichkeiten ihrer Substitution. Hintergrundinformationen und Zahlen zur Vorratssituation und Produktion sowie eine Auswahl grundlegender Schriften schließen jedes Kapitel ab. [Minerales pesados de importancia económica] Resumen: Minerales pesados no tienen un gran papel en la consciencia de los Geólogos en Alemania. Sin embargo los minerales pesados metálicos y no-metálicos tienen una gran importancia económica a escala mundial. Especialmente en los países de la zona tropical y subtropical se encuentran enriquecimientos de minerales pesados que son dignos de explotar. Casi todos los minerales pesados se venden y además en gran cantidades a escala mundial. La 4 importancia económica de los distintos minerales pesados es el objeto de esta monografía. El grupo de los minerales pesados aqui describidos comprende ilmenita y leucoxeno, rutilo, circón, monacita y xenotima, distena, silimanita y andalucita, estaurolita, granate, cromita, magnetita, cassiterita, columbita-tantalita así como wolframita y scheelita. Al comienzo del tratado se encuentra una visión general de la génesis de los yacimientos de minerales pesados y de su explotación. La descripción mineralógica, petrográfica, química así como de la génesis de los yacimientos de los minerales pesados sucede por seperado. Siguen informaciónes extensos sobre el uso de los minerales pesados y de sus productos incluyendo las posibilidades de su sustitución. Informaciónes de trasfondo y cifras de las reservas y de la producción así como una selección de escrituras básicas concluyen cada capitulo. [Importance économique des minéraux lourds] Résumé: En Allemagne, les géologues ne sont pas conscients de l´importance des minéraux lourds. Cependant, ceux-ci sont d´une grande importance sur le plan économique en tant que matières premières minérales métalliques et non métalliques. Ils sont surtout localisés dans les pays tropicaux et subtropicaux. Presque tous les minéraux lourds sont exploités en grande quantité dans le monde entier. L´importance économique de ces différents minéraux fait l´objet de cette monographie. Le groupe des minéraux décrits comprend: ilménite et leucoxène, rutile, zircon, monazite et xénotime, disthène, andalousite et sillimanite, staurolite, grenat, chromite, magnétite, casssiterite, columbite-tantalite, wolframite et scheelite. Un aperçu général de la genèse des gisements et de leur exploitation se trouve en début du rapport. Chaque minéral lourd est classifié de façon minéralogique, pétrographique et chimique et est décrit selon la génétique du gisement. On trouve par la suite des informations détaillées sur l´utilisation des minéraux lourds et des produits obtenus de leur exploitation ainsi que les possibilités de substitution de ceux-ci. Chaque chapitre se termine par des informations d´arrière- plan, des chiffres sur les réserves et sur la production ainsi qu´un choix de publications de référence. 5 Table of contents Page Introductory remarks ....................................................................................... 9 Introduction ..................................................................................................... 10 1 Overview .......................................................................................................... 13 1.1 Classification and definition ............................................................................. 13 1.2 Genesis of Placers ............................................................................................. 14 1.3 Extraction and Processing ................................................................................. 18 1.4 Notes on Prospecting and Exploration .............................................................. 19 1.5 General References ........................................................................................... 20 2 Ilmenite and leucoxene ................................................................................... 23 2.1 Mineralogy, petrography, chemistry ................................................................. 23 2.2 Formation of deposits and occurrences ............................................................. 25 2.3 Applications ...................................................................................................... 27 2.4 Substitutes ......................................................................................................... 38 2.5 Raw material and quality specifications (reference values) .............................. 38 2.6 Deposit size and reserves .................................................................................. 47 2.7 Important producing countries .......................................................................... 51 2.8 References ......................................................................................................... 52 3 Rutile ................................................................................................................ 55 3.1 Mineralogy, petrography, chemistry ................................................................. 55 3.2 Formation of deposits and occurrences ............................................................. 55 3.3 Applications ...................................................................................................... 57 3.4 Substitutes ......................................................................................................... 57 3.5 Raw material and quality specifications (reference values) .............................. 57 3.6 Deposit size and reserves .................................................................................. 63 3.7 Important producing countries .......................................................................... 65 3.8 References ......................................................................................................... 67 4 Zircon ............................................................................................................... 69 4.1 Mineralogy, petrography, chemistry ................................................................. 69 4.2 Formation of deposits and occurrences ............................................................. 70 4.3 Applications ...................................................................................................... 70 4.4 Substitutes ......................................................................................................... 75 4.5 Raw material and quality
Recommended publications
  • Coulsonite Fev2o4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia
    minerals Article Coulsonite FeV2O4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia Alena A. Kompanchenko Geological Institute of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia; [email protected]; Tel.: +7-921-048-8782 Received: 24 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: This work presents new data on a rare vanadium spinel group mineral, i.e., coulsonite FeV2O4 established in massive sulfide ores of the Bragino occurrence in the Kola region, Russia. Coulsonite in massive sulfide ores of the Bragino occurrence is one of the most common vanadium minerals. Three varieties of coulsonite were established based on its chemical composition, some physical properties, and mineral association: coulsonite-I, coulsonite-II, and coulsonite-III. Coulsonite-I forms octahedral crystal clusters of up to 500 µm, and has a uniformly high content of 2 Cr2O3 (20–30 wt.%), ZnO (up to 4.5 wt.%), and MnO (2.8 wt.%), high microhardness (743 kg/mm ) and coefficient of reflection. Coulsonite-II was found in relics of quartz–albite veins in association with other vanadium minerals. Its features are a thin tabular shape and enrichment in TiO2 of up to 18 wt.%. Coulsonite-III is the most common variety in massive sulfide ores of the Bragino occurrence. Coulsonite-III forms octahedral crystals of up to 150 µm, crystal clusters, and intergrowths with V-bearing ilmenite, W-V-bearing rutile, Sc-V-bearing senaite, etc. Chemical composition of coulsonite-III is characterized by wide variation of the major compounds—Fe, V, Cr.
    [Show full text]
  • Investors and Procurement Guide South Africa. Part 1: Heavy Minerals, Rare Earth Elements, Antimony
    Deutsche Rohstoffagentur (DERA) Deutsche Rohstoffagentur 21 21 DERA Rohstoffi nformationen Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) Wilhelmstraße 25 – 30 13593 Berlin Tel.: +49 30 36993 226 Fax: +49 30 36993 100 [email protected] www.deutsche-rohstoffagentur.de DERA Rohstoffi nformationen Rohstoffi DERA ISSN: 2193-5319 ISBN: 978-3-943566 -11- 6 Investor‘s and Procurement Guide South Africa Part 1: Heavy Minerals, Rare Earth Elements, Antimony EP-Umschlag_investorsguide.indd 1 13.03.14 15:36 Impressum Editors: Dr. Peter Buchholz, Head of the German Mineral Resources Agency (DERA) Federal Institute for Geosciences and Natural Resources (BGR) Wilhelmstrasse 25-30 13593 Berlin, Germany Tel.: +49 30 36993 226 Fax.: +49 30 36993 100 [email protected] www.deutsche-rohstoffagentur.de Dr. Stewart Foya Head of the Department of Mineral Resources Development Council for Geoscience (CGS) 280 Pretoria Street, Silverton Pretoria, South Africa Tel.: +27 12 841 1101 Fax.: +27 86 679 8334 [email protected] Authors: Dr. Torsten Graupner (BGR), Dr. Napoleon Q. Hammond (CGS), Maren Liedtke (DERA), Dr. Herwig Marbler (DERA), Rehan Opperman (CGS), Dr. Ulrich Schwarz-Schampera (BGR), Dr. Elisa Long’a Tongu (CGS), Abdul O. Kenan (CGS), Unathi Nondula (CGS), Matamba Tsanwani (CGS) Project coordination: Dr. Herwig Marbler (DERA), Rehan Opperman (CGS) Contact DERA: Dr. Herwig Marbler: [email protected] Contact CGS: Rehan Opperman: [email protected] Layout: DERA, label D Druck + Medien GmbH, Berlin Date: March
    [Show full text]
  • Developments in Uranium Resources, Production, Demand and the Environment
    IAEA-TECDOC-1425 Developments in uranium resources, production, demand and the environment Proceedings of a technical committee meeting held in Vienna, 15–18 June 1999 January 2005 IAEA-TECDOC-1425 Developments in uranium resources, production, demand and the environment Proceedings of a technical committee meeting held in Vienna, 15–18 June 1999 January 2005 The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria DEVELOPMENTS IN URANIUM RESOURCES, PRODUCTION, DEMAND AND THE ENVIRONMENT IAEA, VIENNA, 2004 IAEA-TECDOC-1425 ISBN 92–0–112904–1 ISSN 1011–4289 © IAEA, 2005 Printed by the IAEA in Austria January 2005 FOREWORD Globalization has led to the growing importance of the uranium production industries of the world’s developing countries. Though trade restrictions continue to impede completely free access to the worldwide uranium market, the uranium resources and production capabilities of the developing countries are becoming increasingly important in assuring the adequacy of uranium supplies to meet projected worldwide demand. Therefore, papers presented at this meeting provide an important overview of uranium production operations in developing countries as well as offering insight into future production plans and potential. Along with their increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny
    [Show full text]
  • Chemical Analysis of Extracting Transition Metal Oxides from Polymetallic Ore by Sulphate Process
    EPJ Web of Conferences 140, 13004 (2017) DOI: 10.1051/ epjconf/201714013004 Powders & Grains 2017 Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process Otgon-Uul Enkh-Uyanga1, Baatar Munkhtsetseg 1*, Urtnasan Urangoo2, Enkhtur Tserendulam1 and Davaadorj Agiimaa1 1 Chemistry Department, Ulaanbaatar State University, 13343, U1aanbaatar , Mongolia 2 Charles Sturt University, Canberra 2602 ACT, Australia Abstract. In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis. Keywords: polymetallic ore, anatase, brookite, hematite, rare earth oxides Introduction: Mongolia is a country rich in process at various degrees of water whereas transition polymetallic ores. There is an increased demand for metal sulphates solubility differ. research of the processing polymetallic ores by removing There are certain solutes, which have independently fair impurities and forming refined minerals as transition degree of solubility to temperature change.
    [Show full text]
  • The I\,Iagnetic Separation of Soi'ie Alluvial I,Iinerals in I'ialaya*
    THE AMERICAN MINERAI,OGIST, VOL. 41, JULY AUGUST, 1959 THE I\,IAGNETIC SEPARATION OF SOI'IE ALLUVIAL I,IINERALS IN I'IALAYA* B. H. FnNrant, Minerals Eramination Diaision, GeologicalSurttey D epartment, F'ederotion of M al,aya. Assrnlcr This paper presents the results of a seriesof magnetic separationswhich have been in- vestigated {or a number of minerals occurring in X{alayan alluvial concentrates.The pur- pose of the investigations was to establish,by the isolation of individual mineral species,a reproducible and reliable method for the identification and quantitative estimation of minerals in alluvial concentrates examined by the Geological Survey in Malaya In par- ticular was sought the isolation of columbite from ubiquitous ilmenite. All the separations were made on the small, highly sensitive Frantz Isodynamic Model L-1 laboratory separa- tor, The minerals which have been successfully separated include ailanite, anatase, andalu- site (and chiastolite), arsenopyrite, brookite, cassiterite,columbite, epidote, gahnite, garnet (pink), ilmenite, manganeseoxide (51.6/e Mn), monazite, pyrite, rutile, scheelite,siderite, staurolite, thorite, topaz, tourmaline, uranoan monazite, wolframite, xenotime, and zircon. PnocBpunp When using an inclined feed, the Frantz Isodynamic separator (see Figs. 1(A) & (B)) hasthree inherent variables. These are the field strengLh (current used),the sideslope, and the forward slope. 5;6s $lope wdrd 511)Pe (A) (B) Irc. 1. Diagrammatic representation of side slope and forward slope. The field strength is increasedby means of a rheostat which raises the current from zero in stagesof 0.05 amps. to 1.4 amps. Early in the investigationsit was decidedthat stepsof 0.1 amp. would be sufficiently gradual.
    [Show full text]
  • Uranium and Thorium Resources in India: UNFC System
    Uranium and thorium resources in India: UNFC system P.S.Parihar Atomic Minerals Directorate for Exploration and Research Department of Atomic Energy Government of India 1 21/08/2013 Government of India’s Policy on Atomic Minerals The federal status of the DAE and the powers invested in it under the Indian Atomic Energy Act (1948 and 1962) as amended from time to time, bestow upon it several rights to facilitate atomic mineral exploration. The more significant ones are- . Exclusive rights to conduct exploration for uranium, thorium and other prescribed minerals such as beryllium, lithium, niobium, tantalum and rare-earth elements all over the country . Exclusive rights to buy prescribed minerals from private mine owners produced incidental to mining of other economic minerals. 30/10/2013 - . Rights to access to surface and sub-surface data on areas under exploration or mining/recovery for oil, coal, minerals and ground water by Government or Public Sector Organisations. The facility includes carrying out of gamma-ray logging of boreholes and checking of mine workings and collection of samples etc. 2 UNFC workshop, New Delhi workshop, UNFC Government of India’s Policy on Atomic Minerals Uranium exploration, production and utilisation are under the control of Central Government. Only public sector companies under Government of India are allowed to explore and mine atomic minerals viz. U, Th, etc. Present system of reporting of uranium reserves in India is as per the IAEA system of uranium resource classification . Indicated – [Reasonable
    [Show full text]
  • Strategy Delivery Growth
    Rio Tinto 2009 Annual report Rio Tinto Financial calendar Strategy 2010 14 January Fourth quarter 2009 operations review 11 February Announcement of results for 2009 24 February Rio Tinto plc and Rio Tinto Limited shares and Rio Tinto plc ADRs quoted “ex-dividend” for 2009 fi nal dividend Delivery 26 February Record date for 2009 fi nal dividend for Rio Tinto plc shares and ADRs 2 March Record date for 2009 fi nal dividend for Rio Tinto Limited shares 11 March Plan notice date for election under the dividend reinvestment plan for the 2009 fi nal dividend 1 April Payment date for 2009 fi nal dividend to holders of Ordinary shares and ADRs Growth 15 April Annual general meeting for Rio Tinto plc 15 April First quarter 2010 operations review 22 April Annual general meeting for Rio Tinto Limited A focused and 14 July Second quarter 2010 operations review 5 August Announcement of half year results for 2010 integrated strategy 11 August Rio Tinto plc and Rio Tinto Limited shares and Rio Tinto plc ADRs quoted “ex-dividend” for 2010 interim dividend 13 August Record date for 2010 interim dividend for Rio Tinto plc shares and ADRs 17 August Record date for 2010 interim dividend for Rio Tinto Limited shares Excellence in 18 August Plan notice date for election under the dividend reinvestment plan for the 2010 interim dividend 9 September Payment date for 2010 interim dividend to holders of Ordinary shares and ADRs operational delivery 14 October Third quarter 2010 operations review 2011 Positioned for growth January Fourth quarter 2010 operations review February Announcement of results for 2010 Useful information and contacts Registered offi ces Investor Centre Rio Tinto Limited Rio Tinto plc To fi nd out more about Investor Centre, go to Computershare Investor Services Pty Limited 2 Eastbourne Terrace www.investorcentre.co.uk/riotinto GPO Box 2975 London Holders of Rio Tinto American Melbourne W2 6LG Depositary Receipts (ADRs) Victoria 3001 Registered in England No.
    [Show full text]
  • Arizona Department of Mines and Mineral Resources
    Arizona Department of Mines and Mineral Resources 1502 West Washington, Phoenix, AZ 85007 Phone (602) 255-3795 1-800-446-4259 in Arizona FAX (602) 255-3777 www.admmr.state.az.us Titanium Circular 9, August 1982 by Michael N Greeley, Mining Engineer Titanium is a lightweight metal that is virtually as strong as steel. As our technologies and industries have become increasingly sophisticated, demand for this relatively scarce, but highly desirable metal has increased rapidly. This information circular is written to acquaint the prospector and miner with titanium and its uses. A resume of typical geologic environments and production possibilities in Arizona is given. Uses phisticated needs will vie for a greater share of the The largest market for titanium is in the manufacture world's supply of this unique metal. of pigments. Because of its high refractive index, titanium dioxide pigment imparts whiteness, opacity, Geology and Mineralogy and brightness to paints, varnishes, and lacquers. The most important titanium minerals are anatase Titanium pigment is also used greatly in paper coat­ (Ti0 ), ilmenite (FeTi0 ), perovskite (CaTi03), ru- 2 3 ings and as paper fillers. Many plastic products such tile (Ti0 ), sphene (CaTiSiOS), and leucoxene. Leu­ as polyethylene, polyvinyl chloride, and polystyrene 2 coxene, a mineraloid, is an alteration product of il­ incorporate titanium pigment because of its resis­ menite, from which a portion of the iron has been tance to degradation by ultraviolet light and its leached. Currently the minerals of commercial inter­ chemical inertness. est are ilmenite, leucoxene, and rutile. Production historically has come from three types of deposits: Titanium dioxide pigment and other titanium com­ Beach and stream placers, massive deposits of titani­ pounds are used in many miscellaneous applications, ferous iron ore, and igneous complexes in which ru­ including rubber tires, floor and wall coverings, tile occurs in association with anorthosite and simi­ glass fibers, ceramic capacitors, carbide cutting lar, mafic crystalline rocks.
    [Show full text]
  • CRYSTAL SRUKTUR of CALCIUM TITANATE (Catio3) PHOSPHOR DOPED with PRASEODYMIUM and ALUMINIUM IONS
    CRYSTAL SRUKTUR OF CALCIUM TITANATE (CaTiO3) PHOSPHOR DOPED WITH PRASEODYMIUM AND ALUMINIUM IONS STRUKTUR KRISTAL FOSFOR KALSIUM TITANIA DIDOPKAN DENGAN ION PRASEODYMIUM DAN ALUMINIUM IONS Siti Aishah Ahmad Fuzi1* and Rosli Hussin2 1 Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia. 2 Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor 1*[email protected], [email protected] Abstract The past three decades have witnessed rapid growth in research and development of luminescence phenomenon because of their diversity in applications. In this paper, Calcium Titanate (CaTiO3) was studied to find a new host material with desirable structural properties for luminescence-based applications. Solid state reactions o 3+ methods were used to synthesis CaTiO3 at 1000 C for 6 hours. Crystal structure of CaTiO3 co-doped with Pr 3+ and Al were investigated using X-Ray Diffraction (XRD) method. Optimum percentage to synthesis CaTiO3 was 3+ obtained at 40 mol%CaO-60 mol%TiO2 with a single doping of 1 mol%Pr . However, a crystal structure of 4 mol% of Al3+ co-doped with Pr3+ was determined as an optimum parameter which suitable for display imaging. Keywords: calcium titanate, anatase, rutile Abstrak Semenjak tiga dekad yang lalu telah menunjukkan peningkatan yang ketara bagi kajian dan pembangunan dalam bidang fotolumiscen. Peningkatan ini berkembang dengan meluas disebabkan oleh kebolehannya untuk diaplikasikan dalam pelbagai kegunaan harian. Dalam manuskrip ini, kalsium titania (CaTiO3) telah dikaji untuk mencari bahan perumah dengan sifat struktur yang bersesuaian bagi aplikasi luminescen. Tindak balas keadaan o pepejal telah digunakan bagi mensintesis CaTiO3 pada suhu 1000 C selama 6 jam.
    [Show full text]
  • About Our Mineral World
    About Our Mineral World Compiled from series of Articles titled "TRIVIAL PURSUITS" from News Nuggets by Paul F. Hlava "The study of the natural sciences ought to expand the mind and enlarge the ability to grasp intellectual problems." Source?? "Mineral collecting can lead the interested and inquisitive person into the broader fields of geology and chemistry. This progression should be the proper outcome. Collecting for its own sake adds nothing to a person's understanding of the world about him. Learning to recognize minerals is only a beginning. The real satisfaction in mineralogy is in gaining knowledge of the ways in which minerals are formed in the earth, of the chemistry of the minerals and of the ways atoms are packed together to form crystals. Only by grouping minerals into definite categories is is possible to study, describe, and discuss them in a systematic and intelligent manner." Rock and Minerals, 1869, p. 260. Table of Contents: AGATE, JASPER, CHERT AND .............................................................................................................................2 GARNETS..................................................................................................................................................................2 GOLD.........................................................................................................................................................................3 "The Mystery of the Magnetic Dinosaur Bones" .......................................................................................................4
    [Show full text]
  • INCLUSIONS in AQUAMARINE from AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R
    NEW Danet G&G Fall 2012_Layout 1 9/27/12 11:31 AM Page 205 RAPID COMMUNICATIONS INCLUSIONS IN AQUAMARINE FROM AMBATOFOTSIKELY, MADAGASCAR Fabrice Danet, Marie Schoor, Jean-Claude Boulliard, Daniel R. Neuville, Olivier Beyssac, and Vincent Bourgoin grams of translucent to transparent beryl were pro- duced, as well as several tonnes of opaque material In January 2012, aquamarine crystals containing for industrial use. While only a very small percentage interesting inclusions were extracted from the Am- was suitable for faceting, several hundred aqua- batofotsikely area northwest of Antsirabe, Mada- marines in the 1–35 ct range have been cut. In April gascar. These specimens displayed various types 2012, one of the authors (FD) traveled to the locality of eye-visible and microscopic inclusions, and and obtained representative samples. some had an unusual form. Raman microspec- troscopy identified reddish brown plate lets as Location and Geologic Setting. The workings are lo- hematite, while ilmenite was found as black cated less than 1 km north of Ambatofotsikely (a village platelets, black needles, and distinctive dark gray now locally known as Ambatofotsy Carole), 22 km dendrites. Similar inclusions are known in beryl north-northwest of Ankazomiriotra, and 74 km north- from Brazil, India, Mozambique, and Sri Lanka. west of Antsirabe. The deposit is centered at coordinates 19°27.662¢S, 46°27.450¢E, at an elevation of 1,010 m. The site is accessed by a paved road (RN 34) from ining activity near the central Malagasy village Antsirabe to a point 16 km west of Ankazomiriotra. of Ambatofotsikely was first documented nearly From there, a trail extends 15 km to Ambatofotsikely.
    [Show full text]
  • For Personal Use Only Use Personal For
    Neometals Ltd A.C.N. 099 116 631 Annual Financial Report for the financial year ended 30 June 2018 For personal use only Neometals Ltd Review of Operations REVIEW OF OPERATIONS The directors of Neometals Ltd (“Company” and “Neometals”) present the annual financial report for the Company and its controlled entities (“Consolidated Entity” and “Group”). Neometals’ primary focus during the year centred on advancing its advanced integrated lithium business unit, the titanium / vanadium project (Barrambie) and developing its technology business unit. LITHIUM BUSINESS UNIT Figure 1 - Neometals Horizons of Growth MT MARION LITHIUM PROJECT (Neometals Ltd 13.8%, Mineral Resources Limited (MRL) 43.1%, Ganfeng Lithium Co., Ltd (Ganfeng) 43.1% through Reed Industrial Minerals Pty Ltd (RIM)) Production achieved a steady state annualised production of 400ktpa of combined 6% and 4% grade during the year. A total of 382ktpa of spodumene concentrate was exported (209K WMT 6% and 173K WMT 4%). Construction of the upgrade to the concentrator circuits to facilitate production of 6% Li2O only concentrate is in progress and on track for completion in quarter two FY19 with the plant being ramped up to 100% high grade production shortly thereafter. The achieved price for 6% and 4% spodumene products averaged A$879 per wet tonne for all tonnes exported. Pricing is linked to international lithium carbonate and hydroxide prices rather than bilateral spodumene market prices. The 6% spodumene price for quarter four of FY18 was agreed at US$961 per dry tonne CFR China (US$929 per wet tonne). CFR cash costs for FY18 averaged A$576 per wet tonne exported.
    [Show full text]