A Study on the Intron Landscape of the Cytochrome B Gene, and Mitochondrial-Encoded N-Acetyltransferase and Ribosomal Protein S3 Genes

Total Page:16

File Type:pdf, Size:1020Kb

A Study on the Intron Landscape of the Cytochrome B Gene, and Mitochondrial-Encoded N-Acetyltransferase and Ribosomal Protein S3 Genes A study on the intron landscape of the cytochrome b gene, and mitochondrial-encoded N-acetyltransferase and ribosomal protein S3 genes of fungi in the subphylum Pezizomycotina by Alvan Wai A Thesis to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of MASTER OF SCIENCE Department of Microbiology University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2018 by Alvan Wai Abstract The Master’s program was based on mainly in silico work, employing several bioinformatics techniques/tools. The main focus of the research involved comparative sequence analysis of fungal mitochondrial genomes, which has previously been noted to be a rich source of mobile elements. The work is divided into two projects. The first was the study of intron distribution within the cytochrome b gene of filamentous fungi of the phylum Ascomycota. Cytochrome b genes (129) were sampled from the public database, GenBank, and compared via multiple sequence alignments. A total of 21 unique intron insertion sites were observed. Two introns displaying unique intron arrangements were explored in greater depths. One appears to be capable of alternative splicing, the other encodes an open reading frame interrupted by an intron. The results of the first project demonstrate the diversity of intron insertions within a single gene and its impact on genome evolution, and the potential to uncover novel introns. The second project was based on prior research that noted the presence/absence of N-acetyltransferase and ribosomal protein S3 genes within fungal mitochondrial genomes of the Ascomycota. In order to determine the uniqueness of this presence/absence, the protein sequences of the two genes were sampled from two different databases, GenBank and MycoCosm (Joint Genome Institute). Sequences were retrievable from two different compartments, nucleus and mitochondria. The two data sets were separately aligned, and each were subjected to phylogenetic analyses. The results suggest separate origins for the two genes. The N-acetyltransferase gene appears to have a nuclear origin, but some fungi have obtained a mitochondrial version(s). The ribosomal protein S3 gene appears to be of mitochondrial origin, but some fungi appear to encode two copies of separate origin (mitochondrial or nuclear) in the nuclear genome. The underlying mechanism of transfer of genetic elements between nucleus and mitochondria has yet been elucidated. ii Acknowledgements The Master’s project was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Graduate Enhancement of Tri-Council Stipends (GETS) program of the Faculty of Graduate Studies (University of Manitoba; Winnipeg, Manitoba, Canada). Much appreciation goes to Dr. Steven Zimmerly (University of Calgary; Calgary, Alberta, Canada) for all the advice he gave with regards to modeling of group II introns. Much appreciation also goes to my committee members, Drs. Deborah Court and Sean McKenna for all the advice they have given me throughout the Master’s program. We would like to acknowledge Hay M, La D, Carta A, Chen T, and Corkery T, for all their contributions to the cytochrome b intron landscape project. Valuable comments by two anonymous reviewers of the paper, that Chapter 2 was based on, were greatly appreciated. I am very grateful for everyone, both past and present, that has accompanied me through my Master’s project. Everyone has taught me a lot with regards to not only to materials related to the laboratory but also to various aspects of life. A special acknowledgement goes my parents and siblings for their support and patience during the Master’s program. My deepest gratitude and appreciation goes to Dr. Georg Hausner. I would like to especially thank him for his patience, understanding, and vast insight of not only research but life as well. iii Table of contents Abstract ii Acknowledgements iii List of tables viii List of figures ix List of abbreviations x Chapter 1. Literature review 1 1.1. The Fungi 1 1.2. Fungal mitochondrial genomes 2 1.2.1. Size variation of mitochondrial genomes 5 1.2.2. Self-splicing introns 5 1.2.2.1. Group I introns 6 1.2.2.2. Group II introns 8 1.2.2.3. Group III introns 11 1.2.3. Mobile elements: Mobile introns and intron-encoded proteins 12 1.2.3.1. Homing endonucleases 13 1.2.3.1.1. LAGLIDADG homing endonucleases 13 1.2.3.1.2. GIY-YIG homing endonucleases 17 1.2.4. Introns and fungal phenotypes 18 1.2.4.1. Introns and virulence 18 iv 1.2.4.2. Introns and antibiotic resistance 19 1.2.4.3. Intron and growth and senescence 20 1.2.5. Applications of introns and intron-encoded proteins 23 1.3. Research objectives and rationale 24 Chapter 2: The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames 26 2.1. Abstract 28 2.2. Introduction 28 2.3. Materials and methods 30 2.3.1. Nucleic acid extraction, cytb gene amplification, and DNA sequencing 30 2.3.2. Data mining for cytb sequences 32 2.3.3. Sequence analysis 32 2.3.4. Intron folding 33 2.4. Results 34 2.4.1. The cytb gene architecture among the Ascomycota: the cytb intron landscape 34 2.4.2. Group II introns and novel intron arrangements 53 2.4.3. Group I introns and intron-encoded ORFs 54 2.5. Discussion 59 2.5.1. cytb intron landscape 59 v 2.5.2. Homing endonuclease genes: From intron invasion, to intron/HEG mutualism, to drift, and decay 61 2.5.3. Evolutionary strategies for optimizing or regulating expression of intron ORFs 66 2.6. Conclusions 66 Chapter 3: Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: Here today, gone tomorrow? 68 3.1. Abstract 69 3.2. Introduction 69 3.3. Material and Methods 72 3.3.1. Sequence analysis 72 3.3.2. Intron folding 73 3.3.3. Phylogenetic analysis of NAT and RPS3 amino acid sequences 73 3.4. Results 74 3.4.1. Among the Pezizomycotina, the rps3 gene can be intron-encoded, freestanding, or missing from the mitochondrial genome 74 3.4.2. Encoding pattern of the rps3 gene within the Pezizomycetes 74 3.4.3. Encoding pattern of the rps3 gene within the Dothideomycetes 86 3.4.3.1. The rps3 gene is absent from mitochondrial genomes of the Capnodiales (Dothideomycetes) 87 3.4.4. Encoding pattern of the rps3 gene within the Leotiomycetes 90 3.4.5. Encoding pattern of the rps3 gene within the Lecanoromycetes 90 vi 3.4.6. Encoding pattern of the rps3 gene within the Eurotiomycetes, Sordariomycetes, and Xylonomycetes 90 3.4.7. “Hitchhiking” rps3 genes 93 3.4.8. In fungal mitochondrial genomes, NAT open reading frames can be intron-encoded or freestanding 93 3.4.9. Phylogenetic analysis of mitochondrial- and nuclear-encoded NATs 94 3.4.10. More additions to mitochondrial genomes: members of the aminotransferase superfamily 99 3.5. Discussion 102 3.5.1. The position of the rps3 gene among the Pezizomycotina 102 3.5.2. The case of the lost mtDNA rps3 gene in some members of the Capnodiales 103 3.5.3. Speculations on the formation of freestanding rps3 genes 103 3.5.4. The NAT gene is a recent arrival from the nuclear genome 105 3.6. Conclusions 109 Chapter 4: Conclusions and future directions 110 4.1. The intron landscape of the cytochrome b gene 111 4.2. Mitochondrial-encoded N-acetyltransferase and ribosomal protein S3 113 4.3. Mitochondrial genomes of fungi are diverse: contributions by introns and genes 115 4.4. Potential future work to consider 115 References 118 vii List of tables Table 1.1. Summary of “typical” gene content in mitochondrial genomes of fungi in the phylum Ascomycota. 4 Table 2.1. Summary of introns inserted in the cytb gene sampled from 129 Pezizomycotina fungi from the National Center for Biotechnology Information database. 35 Table 2.2. Summary of the number of introns and the intron/open reading frame configurations observed in the cytb gene, sampled from 129 Pezizomycotina fungi from the National Center for Biotechnology Information database. 47 Table 3.1. The encoding pattern of the rps3 gene among Pezizomycotina fungi surveyed from the Joint Genome Institute MycoCosm web portal and the National Center for Biotechnology Information. 77 Table 3.2. The encoding pattern of the NAT gene among Pezizomycotina fungi surveyed from the National Center for Biotechnology Information. 95 viii List of figures Figure 1.1. Schematic of conserved secondary structures adopted by group I and group II introns. 10 Figure 1.2. The structure of the LAGLIDADG homing endonuclease, I-CreI. 16 Figure 2.1. Phylogenetic tree of cytb genes from fungi of the phylum Ascomycota. 50 Figure 2.2. Intron landscape of the cytochrome b gene. 52 Figure 2.3. The cytb-289 intron of Chrysoporthe austroafricana (KT380883.1). 56 Figure 2.4. The cytb-506 intron of Chaetomium thermophilum (JN007486.1). 58 Figure 2.5. Proposed intron and homing endonuclease life cycle. 63 Figure 3.1. Schematic phylogenetic tree based on current phylogeny of the Ascomycota. 76 Figure 3.2. The proposed secondary structure of the nad5-710 intron of Phyllosticta citriasiana (JGI). 89 Figure 3.3. Phylogenetic analysis of mitochondrial- and nuclear-encoded RPS3 amino acid sequences from fungi of the order Capnodiales. 92 Figure 3.4. Phylogenetic analysis of mitochondrial-encoded NAT amino acid sequences from fungi of the subphylum Pezizomycotina. 101 Figure 3.5. Encoding patterns noted in the cytb-429 intron of fungi of the Pezizomycotina. 108 ix List of abbreviations aa amino acid(s) AAT aminotransferase AT adenine, thymine atp/ATP adenosine triphosphate
Recommended publications
  • Ascomyceteorg 06-05 Ascomyceteorg
    “The story so far...” An Interim Bibliography of Hans-Otto Baral for the Years 1981-2014 Martin BEMMANN Ascomycete.org, 6 (5) : 95-98. Décembre 2014 Mise en ligne le 18/12/2014 Hans-Otto Baral, aka “Zotto”, has contributed a vast amount of pa- BARAL H.-O. 1987. — Der Apikalapparat der Helotiales. Eine lichtmi- pers and digital publications which have inspired not only his aca- kroskopische Studie über Arten mit Amyloidring. Zeitschrift für demic colleagues but also the community of amateur mycologists, Mykologie, 53 (1): 119-135. whose efforts he has included in his ascomycete research for de- [http://www.dgfm-ev.de/sites/default/files/ZM531119Baral.pdf] cades, thus helping stimulate their own work. This compilation of BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten I. his publications and ephemeral works to date is also intended as a Zeitschrift für Mykologie, 55 (1): 119-130. guide for all those who are unaware of its extent, and includes keys [http://www.dgfm-ev.de/sites/default/files/ZM551119Baral.pdf] and some otherwise unpublished papers shared on the DVD “In Vivo BARAL H.-O. 1989. — Beiträge zur Taxonomie der Discomyceten II. Veritas 2005”. Die Calycellina-Arten mit 4sporigen Asci. Beiträge zur Kenntnis der The form “H.-O.” Baral as opposed to “H. O.” Baral has been used Pilze Mitteleuropas, 5: 209-236. consistently throughout, though it varies in the different publica- BARAL H.-O. 1992. — Vital versus herbarium taxonomy: morphologi- tions. Only names of genera and species are set in italics even if this cal differences between living and dead cells of Ascomycetes, and deviates from the original titles.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Colletotrichum: a Catalogue of Confusion
    Online advance Fungal Diversity Colletotrichum: a catalogue of confusion Hyde, K.D.1,2*, Cai, L.3, McKenzie, E.H.C.4, Yang, Y.L.5,6, Zhang, J.Z.7 and Prihastuti, H.2,8 1International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 2School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 3Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 4Landcare Research, Private Bag 92170, Auckland, New Zealand 5Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 6Department of Biology and Geography, Liupanshui Normal College. Shuicheng, Guizhou 553006, P.R. China 7Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 8Department of Biotechnology, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia Hyde, K.D., Cai, L., McKenzie, E.H.C., Yang, Y.L., Zhang, J.Z. and Prihastuti, H. (2009). Colletotrichum: a catalogue of confusion. Fungal Diversity 39: 1-17. Identification of Colletotrichum species has long been difficult due to limited morphological characters. Single gene phylogenetic analyses have also not proved to be very successful in delineating species. This may be partly due to the high level of erroneous names in GenBank. In this paper we review the problems associated with taxonomy of Colletotrichum and difficulties in identifying taxa to species. We advocate epitypification and use of multi-locus phylogeny to delimit species and gain a better understanding of the genus. We review the lifestyles of Colletotrichum species, which may occur as epiphytes, endophytes, saprobes and pathogens.
    [Show full text]
  • From Southwest China
    A peer-reviewed open-access journal MycoKeys 75: 31–49 (2020) doi: 10.3897/mycokeys.75.57192 RESEARCH ARTicLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research Five new additions to the genus Spathaspora (Saccharomycetales, Debaryomycetaceae) from southwest China Shi-Long Lv1, Chun-Yue Chai1, Yun Wang1, Zhen-Li Yan2, Feng-Li Hui1 1 School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China 2 State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co. Ltd., Nanyang 473000, China Corresponding author: Feng-Li Hui ([email protected]) Academic editor: K.D. Hyde | Received 3 August 2020 | Accepted 25 October 2020 | Published 9 November 2020 Citation: Lv S-L, Chai C-Y, Wang Y, Yan Z-L, Hui F-L (2020) Five new additions to the genus Spathaspora (Saccharomycetales, Debaryomycetaceae) from southwest China. MycoKeys 75: 31–49. https://doi.org/10.3897/ mycokeys.75.57192 Abstract Spathaspora is an important genus of d-xylose-fermenting yeasts that are poorly studied in China. During recent yeast collections in Yunnan Province in China, 13 isolates of Spathaspora were obtained from rot- ting wood and all represent undescribed taxa. Based on morphological and phylogenetic analyses (ITS and nuc 28S), five new species are proposed: Spathaspora elongata, Sp. mengyangensis, Sp. jiuxiensis, Sp. para- jiuxiensis and Sp. rosae. Our results indicate a high species diversity of Spathaspora waiting to be discovered in rotting wood from tropical and subtropical southwest China. In addition, the two Candida species, C. jeffriesii and C. materiae, which are members of the Spathaspora clade based on phylogeny, are trans- ferred to Spathaspora as new combinations.
    [Show full text]
  • Notes on Currently Accepted Species of Colletotrichum
    Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known).
    [Show full text]
  • The ITS‐Based Phylogeny of Fungi Associated with Tarballs Abstract
    Author Version: Mar. Pollut. Bull., vol.113(1‐2); 2016; 277‐281 The ITS‐based phylogeny of fungi associated with tarballs Olivia Sanyal1, 2, Varsha Laxman Shinde2, Ram Murti Meena2, Samir Damare2, Belle Damodara Shenoy2, 3, * 1Department of Food and Biotechnology, Jayoti Vidyapeeth Women’s University, Jaipur, Rajasthan, India 2Biological Oceanography Division, CSIR‐National Institute Oceanography, Dona Paula ‐ 403004, Goa, India 3CSIR‐National Institute of Oceanography Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam ‐ 530017, Andhra Pradesh, India #corresponding author: [email protected], [email protected] Abstract Tarballs, the remnants of crude oil which change into semi‐solid phase due to various weathering processes in the sea, are rich in hydrocarbons, including toxic and almost non‐degradable hydrocarbons. Certain microorganisms such as fungi are known to utilize hydrocarbons present in tarballs as sole source of carbon for nutrition. Previous studies have reported 53 fungal taxa associated with tarballs. There is apparently no gene sequence‐data available for the published taxa so as to verify the fungal identification using modern taxonomic tools. The objective of the present study is to isolate fungi from tarballs collected from Candolim beach in Goa, India and investigate their phylogenetic diversity based on 5.8S rRNA gene and the flanking internal transcribed spacer regions (ITS) sequence analysis. In the ITS‐based NJ tree, eight tarball‐associated fungal isolates clustered with 3 clades of Dothideomycetes and 2 clades of Saccharomycetes. To the best of our knowledge, this is the first study that has employed ITS‐based phylogeny to characterize the fungal diversity associated with tarballs. Further studies are warranted to investigate the role of the tarball‐associated fungi in degradation of recalcitrant hydrocarbons present in tarballs and the role of tarballs as carriers of human pathogenic fungi.
    [Show full text]
  • Diplocarpon Rosae) Genetic Diversity in Eastern North America Using Amplified Fragment Length Polymorphism and Implications for Resistance Screening
    J. AMER.SOC.HORT.SCI. 132(4):534–540. 2007. Distribution of Rose Black Spot (Diplocarpon rosae) Genetic Diversity in Eastern North America Using Amplified Fragment Length Polymorphism and Implications for Resistance Screening Vance M. Whitaker and Stan C. Hokanson1 Department of Horticultural Science, University of Minnesota, 258 Alderman Hall, 1970 Folwell Avenue, St. Paul, MN 55108 James Bradeen Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108 ADDITIONAL INDEX WORDS. AMOVA, dendrogram, fungal isolate, Jaccard’s coefficient, pathogenic race, principal component analysis ABSTRACT. Black spot, incited by the fungus Diplocarpon rosae Wolf, is the most significant disease problem of landscape roses (Rosa hybrida L.) worldwide. The documented presence of pathogenic races necessitates that rose breeders screen germplasm with isolates that represent the range of D. rosae diversity for their target region. The objectives of this study were to characterize the genetic diversity of single-spore isolates from eastern North America and to examine their distribution according to geographic origin, host of origin, and race. Fifty isolates of D. rosae were collected from roses representing multiple horticultural classes in disparate locations across eastern North America and analyzed by amplified fragment length polymorphism. Considerable marker diversity among isolates was discovered, although phenetic and cladistic analyses revealed no significant clustering according to host of origin or race. Some clustering within collection locations suggested short-distance dispersal through asexual conidia. Lack of clustering resulting from geographic origin was consistent with movement of D. rosae on vegetatively propagated roses. Results suggest that field screening for black spot resistance in multiple locations may not be necessary; however, controlled inoculations with single-spore isolates representing known races is desirable as a result of the inherent limitations of field screening.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Characterization and Phylogenetic Analysis of the Mitochondrial Genome of Glarea Lozoyensis Indicates High Diversity Within the Order Helotiales
    Characterization and Phylogenetic Analysis of the Mitochondrial Genome of Glarea lozoyensis Indicates High Diversity within the Order Helotiales Loubna Youssar1*, Bjo¨ rn Andreas Gru¨ ning1, Stefan Gu¨ nther1, Wolfgang Hu¨ ttel2 1 Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany, 2 Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany Abstract Background: Glarea lozoyensis is a filamentous fungus used for the industrial production of non-ribosomal peptide pneumocandin B0. In the scope of a whole genome sequencing the complete mitochondrial genome of the fungus has been assembled and annotated. It is the first one of the large polyphyletic Helotiaceae family. A phylogenetic analysis was performed based on conserved proteins of the oxidative phosphorylation system in mitochondrial genomes. Results: The total size of the mitochondrial genome is 45,038 bp. It contains the expected 14 genes coding for proteins related to oxidative phosphorylation,two rRNA genes, six hypothetical proteins, three intronic genes of which two are homing endonucleases and a ribosomal protein rps3. Additionally there is a set of 33 tRNA genes. All genes are located on the same strand. Phylogenetic analyses based on concatenated mitochondrial protein sequences confirmed that G. lozoyensis belongs to the order of Helotiales and that it is most closely related to Phialocephala subalpina. However, a comparison with the three other mitochondrial genomes known from Helotialean species revealed remarkable differences in size, gene content and sequence. Moreover, it was found that the gene order found in P. subalpina and Sclerotinia sclerotiorum is not conserved in G. lozoyensis. Conclusion: The arrangement of genes and other differences found between the mitochondrial genome of G.
    [Show full text]
  • Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Europäische Pilzgattungen Der Discomyceten Und Hypogäischen Ascomyc
    Pilzgattungen Europas - Liste 8: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für Discomyceten und hypogäische Ascomyceten Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Beachte: Ascomycota mit Discomyceten-Phylogenie, aber ohne Fruchtkörperbildung, wurden von mir in die Pyrenomyceten-Datei gestellt. Erstaunlich ist die Vielzahl der Ordnungen, auf die die nicht- lichenisierten Discomyceten verteilt sind. Als Überblick soll die folgende Auflistung dieser Ordnungen dienen, wobei die Zuordnung der Arten u. Gattungen dabei noch sehr im Fluss ist, so dass mit ständigen Änderungen bei der Systematik zu rechnen ist. Es darf davon ausgegangen werden, dass die Lichenisierung bestimmter Arten in vielen Fällen unabhängig voneinander verlorengegangen ist, so dass viele Ordnungen mit üblicherweise lichenisierten Vertretern auch einige wenige sekundär entstandene, nicht-licheniserte Arten enthalten. Eine Aufzählung der zahlreichen Familien innerhalb dieser Ordnungen würde sogar den Rahmen dieser Arbeit sprengen, dafür muss auf Kirk et al. (2008) u. auf die neuste Version des Outline of Ascomycota verwiesen werden (www.fieldmuseum.org/myconet/outline.asp). Die Ordnungen der europäischen nicht-lichenisierten Discomyceten und hypogäischen Ascomyceten Wegen eines fehlenden modernen Buches zur deutschen Discomycetenflora soll hier eine Übersicht über die Ordnungen der Discomyceten mit nicht-lichenisierten Vertretern vorangestellt werden (ca. 18 europäische Ordnungen mit nicht- lichenisierten Discomyceten): Agyriales (zu Lecanorales?) Lebensweise: Zum Teil lichenisiert Arthoniales (= Opegraphales) Lebensweise: Zum Teil lichenisiert Caliciales (zu Lecanorales?) Lebensweise: Zum Teil lichenisiert Erysiphales (diese aus praktischen Gründen in der Pyrenomyceten- Datei abgehandelt) Graphidales [seit allerneuster Zeit wieder von den Ostropales getrennt gehalten; s. Wedin et al. (2005), MR 109, 159-172; Lumbsch et al.
    [Show full text]
  • Endogenous Fungi Isolated from Three Locoweed Species from Rangeland in Western China
    Vol. 11(5), pp. 155-170, 7 February, 2017 DOI: 10.5897/AJMR2016.8392 Article Number: AF9092562585 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Endogenous fungi isolated from three locoweed species from rangeland in western China Hao Lu1, Haiyun Quan1, Qiwu Zhou2, Zhenhui Ren1, Ruixu Xue1, Baoyu Zhao1 and Rebecca Creamer3* 1College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China. 2Department of Agriculture, Dianxi Science and Technology Normal University, Lincang, Yunnan, 67700, China. 3Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA. Received 24 November, 2016; Accepted 10 January, 2016 Leguminous locoweeds cause toxicosis to grazing animals in western China and western USA. Swainsonine, a toxic alkaloid, is produced by the endophytic fungus Alternaria section Undifilum sp. living within the locoweed plants. Nothing is known of the other endogenous fungi associated with locoweed and it is unknown if the presence of Alternaria sect. Undifilum sp., a potential mutualist, in a locoweed influences the fungal microbiome associated with the plant. To help address these questions, endogenous fungi associated with three locoweed species (Oxytropis glabra, Sphaerophysa salsula, and Astragalus variabilis) collected from grasslands from western China were evaluated. Fungi were isolated from the tissues and identified by morphological features and sequencing of the internal transcribed spacer (ITS) regions. A total of 1209 fungal isolates were obtained from 1819 tissues for an isolation rate of 66.5%. Alternaria sect. Undifilum oxytropis, Alternaria spp.
    [Show full text]