ACE2 and SCARF Expression in Human Dorsal Root Ganglion Nociceptors: Implications for SARS-Cov-2 Virus Neurological Effects Stephanie Shiersa, Pradipta R

Total Page:16

File Type:pdf, Size:1020Kb

ACE2 and SCARF Expression in Human Dorsal Root Ganglion Nociceptors: Implications for SARS-Cov-2 Virus Neurological Effects Stephanie Shiersa, Pradipta R Research Paper ACE2 and SCARF expression in human dorsal root ganglion nociceptors: implications for SARS-CoV-2 virus neurological effects Stephanie Shiersa, Pradipta R. Raya, Andi Wangzhoua, Ishwarya Sankaranarayanana, Claudio Esteves Tatsuib, Laurence D. Rhinesb, Yan Lic, Megan L. Uhelskic, Patrick M. Doughertyc, Theodore J. Pricea,* Abstract SARS-CoV-2 has created a global crisis. COVID-19, the disease caused by the virus, is characterized by pneumonia, respiratory distress, and hypercoagulation and can be fatal. An early sign of infection is loss of smell, taste, and chemesthesis—loss of chemical sensation. Other neurological effects of the disease have been described, but not explained. It is now apparent that many of these neurological effects (for instance joint pain and headache) can persist for at least months after infection, suggesting a sensory neuronal involvement in persistent disease. We show that human dorsal root ganglion (DRG) neurons express the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 at the RNA and protein level. We also demonstrate that SARS-CoV-2 and coronavirus- associated factors and receptors are broadly expressed in human DRG at the lumbar and thoracic level as assessed by bulk RNA sequencing. ACE2 mRNA is expressed by a subset of nociceptors that express MRGPRD mRNA, suggesting that SARS-CoV-2 may gain access to the nervous system through entry into neurons that form free nerve endings at the outermost layers of skin and luminal organs. Therefore, DRG sensory neurons are a potential target for SARS-CoV-2 invasion of the peripheral nervous system, and viral infection of human nociceptors may cause some of the persistent neurological effects seen in COVID-19. Keywords: ACE2, MRGPRD, NPPB, Nociceptor, Viral infection, COVID-19 1. Introduction epithelium.6 This is sometimes accompanied by loss of chemical 21 The SARS-CoV-2 virus that causes COVID-19 enters cells sensation, chemesthesis. This chemesthesis includes loss of capsaicin and menthol sensitivity,21 sensations that are mediated by through the angiotensin-converting enzyme 2 (ACE2) receptor. 4 32,33 nociceptive sensory neurons. Other neurological effects of SARS- The spike protein of the virus binds to ACE2 and can be 13 8 CoV-2 associated with nociceptors have been described, including primed by a number of proteases (TMPRSS2 and Furin ) that 16,18,36 37 headache and nerve pain, and may be involved in neuro- are sometimes coexpressed by ACE2-positive cells. A set of 25 genes that are involved in the response to SARS-CoV-2, SARS- immune interactions in the lung. Finally, as the pandemic has CoV-2 and coronavirus-associated factors and receptors progressed, it is now clear that many patients do not have a 27 complete recovery from COVID-19 and experience continuing (SCARFs), have emerged allowing for assessment of virus 7 effects on tissues through analysis of RNA sequencing or other symptoms such as dyspnea, joint pain, chest pain, and cough, all of high-throughput data sets. which are mediated, at least in part, by nociceptors. In addition, Neurological symptoms are common in patients with COVID-19. severe central nervous system effects such as encephalopathies and delirium have also been observed in patients with COVID- Loss of smell (anosmia) and taste is an early symptom which is 10,22 explained by non-neuronal ACE2 expression within the olfactory 19. Molecular mechanisms underlying these effects are not currently known, although studies with human brain organoids demonstrate the ACE2-dependent neuroinvasive potential of the 28 Sponsorships or competing interests that may be relevant to content are disclosed SARS-CoV-2 virus. at the end of this article. Bulk RNA sequencing data sets support the conclusion that a Department of Neuroscience and Center for Advanced Pain Studies, University of ACE2 is expressed in human DRG,20,23 but cellular resolution is b Texas at Dallas, Richardson, TX, United States, Department of Neurosurgery, lacking. Single-cell sequencing experiments from mouse DRG show University of Texas MD Anderson Cancer Center, Houston, TX, United States, c Department of Anesthesia and Pain Medicine, University of Texas MD Anderson weak Ace2 expression in a subset of neurons that also express the Cancer Center, Houston, TX, United States Mrgprd and Nppb genes.30 MrgprD is selectively expressed in a 38 *Corresponding author. Address: University of Texas at Dallas, Department of nociceptor population that forms free nerve endings in the skin, Neuroscience and Center for Advanced Pain Studies, 800 W Campbell RD, BSB cornea, and luminal organs such as the colon12 as well as the 14.102, Richardson TX 75080, United States. E-mail address: Theodore.price@ 31 utdallas.edu (T.J. Price). meninges. We tested the hypothesis that ACE2 mRNA is Supplemental digital content is available for this article. Direct URL citations appear expressed in a subset of human DRG neurons using tissues in the printed text and are provided in the HTML and PDF versions of this article on obtained from organ donors or vertebrectomy surgery based on the journal’s Web site (www.painjournalonline.com). RNAscope in situ hybridization. Our findings support the conclusion PAIN 161 (2020) 2494–2501 that approximately a quarter of human DRG neurons express ACE2 © 2020 International Association for the Study of Pain mRNA and that ACE2 protein is also found in the human DRG. Most http://dx.doi.org/10.1097/j.pain.0000000000002051 of these ACE2 mRNA–expressing neurons are nociceptors that likely 2494 S. Shiers et al.·161 (2020) 2494–2501 PAIN® Copyright © 2020 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited. November 2020· Volume 161· Number 11 www.painjournalonline.com 2495 form free nerve endings in skin or other organs, creating a potential 2.3. Tissue quality check entry point for the virus into the peripheral nervous system. All tissues were checked for RNA quality by using a positive control probe cocktail (ACD) which contains probes for high-, 2. Materials and methods medium-, and low-expressing mRNAs that are present in all cells (ubiquitin C . peptidyl-prolyl cis-trans isomerase B . DNA- 2.1. Tissue preparation directed RNA polymerase II subunit RPB1). All tissues showed All human tissue procurement procedures were approved by the signal for all 3 positive control probes (Supplementary Fig. 1, institutional review boards at the University of Texas at Dallas and available at http://links.lww.com/PAIN/B157). A negative control University of Texas MD Anderson Cancer Center. Human dorsal root probe against the bacterial DapB gene (ACD) was used to check ganglion (DRG) (at levels T4, T5, and L5) was collected, frozen on dry for nonspecific/background label. ice (L5) or liquid nitrogen (T4 and T5), and stored in a 280˚C freezer. Donor and/or patient information is provided in Table 1. The human 2.4. Image analysis DRG were gradually embedded with optical coherence tomography in a cryomold by adding small volumes of optical coherence Dorsal root ganglion sections were imaged on an Olympus tomography over dry ice to avoid thawing. All tissues were cryostat FV3000 confocal microscope at 320 or 340 magnification. For sectioned at 20 mm onto SuperFrost Plus charged slides. Sections the CALCA/P2RX3/ACE2 and SCN10A/ACE2 experiments, 3 to were only briefly thawed to adhere to the slide but were immediately 4 20X images were acquired of each human DRG section, and 3 returned to the 220˚C cryostat chamber until completion of to 4 sections were imaged per human donor. For the MRGPRD/ sectioning. The slides were then immediately used for histology. NPPB/ACE2 experiments, 8 40X images were acquired of each human DRG section, and 3 to 4 sections were imaged per donor. The sections imaged were chosen at random, but preference was 2.2. RNAscope in situ hybridization given to sections that did not have any sectioning artifact or RNAscope in situ hybridization multiplex version 1 was performed as sections that encompassed the entire DRG bulb. The acquisition instructed by Advanced Cell Diagnostics (ACD). Slides were parameters were set based on guidelines for the FV3000 removed from the cryostat and immediately transferred to cold provided by Olympus. In particular, the gain was kept at the (4˚C) 10% formalin for 15 minutes. The tissues were then dehydrated default setting 1, HV #600, offset 5 4 (based on HI-LO settings; in 50% ethanol (5 minutes), 70% ethanol (5 minutes), and 100% does not change between experiments), and laser power #10% ethanol (10 minutes) at room temperature. The slides were air dried (but generally, the laser power was #5% for our experiments). briefly, and then, boundaries were drawn around each section using The raw image files were brightened and contrasted in Olympus a hydrophobic pen (ImmEdge PAP pen; Vector Labs, Burlingame, CellSens software (v1.18) and then analyzed manually 1 cell at a CA). When hydrophobic boundaries had dried, protease IV reagent time for expression of each gene target. Cell diameters were was added to each section until fully covered and incubated for 5 measured using the polyline tool. Total neuron counts for human minutes at room temperature. The protease IV incubation period samples were acquired by counting all the probe-labeled neurons was optimized as recommended by ACD for the specific lot of and all neurons that were clearly outlined by DAPI (satellite cell) protease IV reagent. Slides were washed briefly in 1X phosphate- signal and contained lipofuscin in the overlay image. buffered saline (pH 7.4) at room temperature. Each slide was then Large globular structures and/or signal that autofluoresced in placed in a prewarmed humidity control tray (ACD) containing all 3 channels (488, 550, and 647; appears white in the 20x dampened filter paper, and a mixture of channel 1, channel 2, and RNAscope overlay images) was considered to be background channel 3 probes (50:1:1 dilution, as directed by ACD due to stock lipofuscin and was not analyzed.
Recommended publications
  • Canine Dorsal Root Ganglia Satellite Glial Cells Represent an Exceptional Cell Population with Astrocytic and Oligodendrocytic P
    www.nature.com/scientificreports OPEN Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and Received: 17 August 2017 Accepted: 6 October 2017 oligodendrocytic properties Published: xx xx xxxx W. Tongtako1,2, A. Lehmbecker1, Y. Wang1,2, K. Hahn1,2, W. Baumgärtner1,2 & I. Gerhauser 1 Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specifc properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was diferentially afected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These fndings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo. Since the discovery of glial cells over a century ago, substantial progress has been made in understanding the origin, development, and function of the diferent types of glial cells in the central nervous system (CNS) and peripheral nervous system (PNS)1.
    [Show full text]
  • Gamma Motor Neurons Survive and Exacerbate Alpha Motor Neuron Degeneration In
    Gamma motor neurons survive and exacerbate alpha PNAS PLUS motor neuron degeneration in ALS Melanie Lalancette-Heberta,b, Aarti Sharmaa,b, Alexander K. Lyashchenkoa,b, and Neil A. Shneidera,b,1 aCenter for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032; and bDepartment of Neurology, Columbia University, New York, NY 10032 Edited by Rob Brownstone, University College London, London, United Kingdom, and accepted by Editorial Board Member Fred H. Gage October 27, 2016 (received for review April 4, 2016) The molecular and cellular basis of selective motor neuron (MN) the muscle spindle and control the sensitivity of spindle afferent vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In discharge (15); beta (β) skeletofusimotor neurons innervate both genetically distinct mouse models of familial ALS expressing intra- and extrafusal muscle (16). In addition to morphological mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein differences, distinct muscle targets, and the absence of primary 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective afferent (IA)inputsonγ-MNs, these functional MN subtypes also degeneration of alpha MNs (α-MNs) and complete sparing of differ in their trophic requirements, and γ-MNs express high levels gamma MNs (γ-MNs), which selectively innervate muscle spindles. of the glial cell line-derived neurotropic factor (GDNF) receptor Resistant γ-MNs are distinct from vulnerable α-MNs in that they Gfrα1 (17). γ-MNs are also molecularly distinguished by the ex- lack synaptic contacts from primary afferent (IA) fibers. Elimination pression of other selective markers including the transcription α of these synapses protects -MNs in the SOD1 mutant, implicating factor Err3 (18), Wnt7A (19), the serotonin receptor 1d (5-ht1d) this excitatory input in MN degeneration.
    [Show full text]
  • Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury
    cells Review Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury Håkan Aldskogius * and Elena N. Kozlova Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial Citation: Aldskogius, H.; Kozlova, neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response E.N.
    [Show full text]
  • Human Sensory Neurons: Membrane Properties and Sensitization by Inflammatory Mediators
    PAINÒ 155 (2014) 1861–1870 www.elsevier.com/locate/pain Human sensory neurons: Membrane properties and sensitization by inflammatory mediators Steve Davidson a,1, Bryan A. Copits a,1, Jingming Zhang b, Guy Page b, Andrea Ghetti b, ⇑ Robert W. Gereau IV a, a Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA b AnaBios Corporation, San Diego, CA 92109, USA Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article. article info abstract Article history: Biological differences in sensory processing between human and model organisms may present signifi- Received 25 April 2014 cant obstacles to translational approaches in treating chronic pain. To better understand the physiology Received in revised form 28 May 2014 of human sensory neurons, we performed whole-cell patch-clamp recordings from 141 human dorsal Accepted 20 June 2014 root ganglion (hDRG) neurons from 5 young adult donors without chronic pain. Nearly all small-diameter hDRG neurons (<50 lm) displayed an inflection on the descending slope of the action potential, a defining feature of rodent nociceptive neurons. A high proportion of hDRG neurons were responsive to the algo- Keywords: gens allyl isothiocyanate (AITC) and ATP, as well as the pruritogens histamine and chloroquine. We show Bradykinin that a subset of hDRG neurons responded to the inflammatory compounds bradykinin and prostaglandin Dorsal root ganglia Human E2 with action potential discharge and show evidence of sensitization including lower rheobase. Itch Compared to electrically evoked action potentials, chemically induced action potentials were triggered Nociception from less depolarized thresholds and showed distinct afterhyperpolarization kinetics.
    [Show full text]
  • The Spinal Cord and Spinal Nerves
    14 The Nervous System: The Spinal Cord and Spinal Nerves PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The Central Nervous System (CNS) consists of: • The spinal cord • Integrates and processes information • Can function with the brain • Can function independently of the brain • The brain • Integrates and processes information • Can function with the spinal cord • Can function independently of the spinal cord © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • 45 cm in length • Passes through the foramen magnum • Extends from the brain to L1 • Consists of: • Cervical region • Thoracic region • Lumbar region • Sacral region • Coccygeal region © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • Consists of (continued): • Cervical enlargement • Lumbosacral enlargement • Conus medullaris • Cauda equina • Filum terminale: becomes a component of the coccygeal ligament • Posterior and anterior median sulci © 2012 Pearson Education, Inc. Figure 14.1a Gross Anatomy of the Spinal Cord C1 C2 Cervical spinal C3 nerves C4 C5 C 6 Cervical C 7 enlargement C8 T1 T2 T3 T4 T5 T6 T7 Thoracic T8 spinal Posterior nerves T9 median sulcus T10 Lumbosacral T11 enlargement T12 L Conus 1 medullaris L2 Lumbar L3 Inferior spinal tip of nerves spinal cord L4 Cauda equina L5 S1 Sacral spinal S nerves 2 S3 S4 S5 Coccygeal Filum terminale nerve (Co1) (in coccygeal ligament) Superficial anatomy and orientation of the adult spinal cord. The numbers to the left identify the spinal nerves and indicate where the nerve roots leave the vertebral canal.
    [Show full text]
  • A Dorsal Root Ganglion (DRG) Is a Cluster of Nerve Cell Bodies in to Understand How Specific Ion Channels Contribute to DRG the Posterior Root of the Spinal Nerve
    Pain Introduction Evaluation of ion channel activity in cultured DRG A dorsal root ganglion (DRG) is a cluster of nerve cell bodies in To understand how specific ion channels contribute to DRG the posterior root of the spinal nerve. They have been identified activity in the MEA assay, the cells were treated with various as a potential in vitro model for pain. However, developing a test compounds. Sodium channel inhibitors were tested not only predictive assay amenable to high throughput drug screening at different concentrations but also at different stages of culture has proven challenging. Recently, scientists used primary rat maturation. Cultured DRG neurons showed complete activity DRGs to develop a robust phenotypic screening assay for pain inhibition with tetrodotoxin (left) and T-type calcium channel using the Maestro™ multiwell microelectrode array (MEA). blocker mibefradil (right) but were affected to a lesser extent by N- and L-type calcium channel blockers (data not shown). DRG neuron spontaneous activity recorded using Maestro MEA platform To begin, scientists confirmed that spontaneous electrical activity in DRG neurons could be recorded using the Maestro MEA system. Raw data (action potential spikes) are shown below, left. Careful evaluation of cell culture media conditions concluded that nerve growth factor (NGF) and physiological levels of sodium chloride (below, right), were critical to obtaining consistently active cultures. The researchers also evaluated assay temperature and found a statistically significant increase in activity at 42°C compared to 37°C. Validation of the in vitro pain assay Lastly, the researchers validated the assay with three clinically- validated drugs used to treat neuropathic pain.
    [Show full text]
  • An Integrin Approach to Axon Regeneration
    Eye (2017) 31, 206–208 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/17 www.nature.com/eye CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM An integrin approach JW Fawcett to axon regeneration Abstract endosomes. Regenerating axons must penetrate the glial extracellular matrix (ECM), and the key Axon regeneration in the CNS is blocked by receptors for ECM molecules are integrins. inhibitory molecules in the environment and Within the adult CNS the main ECM by a developmental loss of regenerative potential in CNS axons. Axon growth is a glycoprotein is Tenascin-C (TN-C), which is specialized form of cell migration, and for upregulated at sites of injury in the brain, spinal any cell to migrate there must be an adhesion cord, and optic nerve. The integrin that allows α β molecule at the growth tip that recognizes a cells to migrate on TN-C is alpha9 beta1 ( 9 1), ligand in the environment, and which is and this integrin is expressed in the CNS during linked to signaling and cytoskeletal embryonic development but then mechanisms. The reasons for this loss of downregulated in adulthood and not regenerative ability in CNS axons are several, upregulated after injury. When we started to fi fi but important contributors are the investigate this eld, our rst question was α β developmental loss of integrins that recognize whether expression of 9 1-integrin in adult ligands in the mature CNS environment, and neurons would promote axon regeneration. in vitro selective trafficking of integrins and other We found that neurons transfected grew molecules to exclude them from axons and axons for long distances on TN-C, but when the in vivo direct them to dendrites.
    [Show full text]
  • University of California San Diego
    UNIVERSITY OF CALIFORNIA SAN DIEGO Spontaneous Neurogenic Electromyographic Activities in ALS G93A Rats, Potential Over- Excitatory Drive Leading to Alpha Motor Neuron Degeneration A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Peixi Chen Committee in charge: Professor Martin Marsala, Chair Professor Nicholas C. Spitzer, Co-Chair Professor Stefan Leutgeb 2018 The Thesis of Peixi Chen is approved, and is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii DEDICATION Though this journey has embarked an unprecedented turn, it is ultimately rewarding. I would like to dedicate this to those who persisted with me until the very end. Special thanks to Mariana, who provided me with immense support and guidance as we work on this project. Next, I would like to thank my cousin, Zhiling, and my best friend, Maylin, in providing me with valuable insights in experimental methodologies, and motivating me to move forward in research despite any hardships that arise. Without a doubt, I would not be able to go as far without my parents’ trusts put into whatever that I strive to achieve. Lastly, I would like to thank my thesis committee members, Dr. Martin Marsala, Dr. Nicholas C. Spitzer, and Dr. Stefan Leutgeb for agreeing to serve on my committee and inspiring me to further myself in the field of neuroscience. iv EPIGRAPH “Most of the threats we face, come from the progress we’ve made in science and technology. We are not going to stop making progress, or reverse it, so we must recognize the dangers and control them.
    [Show full text]
  • Quantitative Differences in Neuronal Subpopulations Between Mouse and Human Dorsal Root Ganglia Demonstrated with Rnascope in Si
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.981597; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Title: Quantitative differences in neuronal subpopulations between mouse and human dorsal root ganglia demonstrated with RNAscope in situ hybridization Authors: Stephanie Shiers1, Rebecca M. Klein2, and Theodore J Price1 1University of Texas at Dallas, School of Behavioral and Brain Sciences 2Merck Research Laboratories, Merck Sharp, and Dohme, Neuroscience, West Point, PA. #Corresponding author Theodore J Price University of Texas at Dallas School of Behavioral and Brain Sciences 800 W Campbell Rd BSB 14.102 Richardson TX 75080 972-883-4311 [email protected] Number of pages in document: 43 Number of figures: 16 Number of tables: 3 Number of supplementary tables: 6 Word count Abstract: 226 Introduction: 550 Discussion: 992 Classification: Biological Sciences The authors declare no conflicts of interest ACKNOWLEDGEMENTS: This work was supported by MercK Sharp and Dohme. Keywords: dorsal root ganglion, human, mouse, peptidergic nociceptor, non-peptidergic nociceptor, in situ hybridization 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.981597; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
    [Show full text]
  • Unit 11 Cranial Nerves, Spinal Cord, and Reflexes
    1 BIOL 2210L Unit 11: Cranial Nerves, Spinal Cord, and Reflexes Authors: Terri Koontz and Anna Gilletly, CNM Biology Department Creative Commons Attribution-NonCommercial 4.0 International License Terms to Know for Unit 11 Cranial Nerves Meninges Additional Instructor Terms Olfactory nerve Epidural space Olfactory bulb Dura mater Olfactory tract Arachnoid mater Optic nerve Subarachnoid space Optic chiasma Pia mater Optic tract Oculomotor nerve Reflex arc Trochlear nerve Receptor Trigeminal nerve Sensory neuron Facial nerve Afferent pathway Vestibulocochlear nerve Integration Center Glossopharyngeal nerve Interneuron Vagus nerve Motor neuron Accessory nerve Effector Hypoglossal nerve Patellar reflex Spinal Cord Patellar ligament Conus medullaris Femoral nerve Cauda equina Quadriceps femoris Gray matter Hamstrings Posterior horn Anterior horn Central canal Dorsal root Dorsal root ganglion Ventral root Spinal nerves White matter Filum terminale Anterior median fissure Posterior median fissure Learning Objectives (modified from HAPS learning outcomes) 1. Structure & function of cranial nerves 2 a. List and identify the cranial nerves by name and number. b. Describe the specific functions of each of the cranial nerves and classify each as sensory, motor or mixed. c. Identify the foramina that the cranial nerves pass through within the skull. 2. Anatomy of the spinal cord a. Describe the gross anatomy of the spinal cord. b. Identify the anatomical features seen in a cross sectional view of the spinal cord c. Identify the dorsal root ganglia, dorsal and ventral roots, and spinal nerves. 3. Reflexes & their roles in nervous system function a. Define the term reflex. b. Describe reflex responses in terms of the major structural and functional components of a reflex arc.
    [Show full text]
  • Developing Dorsal Root Ganglion Neurons Require Trophic
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 6245-6249, October 1984 Neurobiology Developing dorsal root ganglion neurons require trophic support from their central processes: Evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery (dorsal root axons/sensory neurons/retrograde transport/trophism) HENRY K. YIP AND EUGENE M. JOHNSON, JR. Department of Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 Communicated by Oliver H. Lowry, June 11, 1984 ABSTRACT Injury to the peripheral processes produces a response." The lesser role of the central relative to the pe- profound cell loss (40-50%) in the dorsal root ganglion ofnew- ripheral process could be due, in part, to the disproportion- born rats. Although division of central processes produces lit- ate loss of axoplasmic volume between the central and pe- tie or no cellular change in sensory ganglion of adult animals, ripheral axons after axotomy because the central axons are no Information has been available on the effect of dorsal root of smaller diameter (7) and the flow of axoplasm is slower section in developing dorsal root ganglion. We show that 6 than in the large peripherally directed axons (8, 9). days after dorsal rhizotomy on newborn rats, there is a 50% Populations of developing neurons come under the influ- decrease in neuronal number in L5 dorsal root ganglion. A ence of their peripheral fields and are able to make compen- combined central and peripheral lesion of the sensory process satory adjustments according to the sizes of the afferent in- results in a greater decrease in neuronal number (70%).
    [Show full text]
  • Involvement of the Dorsal Root Ganglion in Acute Experimental Allergic Encephalomyelitis in the Lewis Rat a Histological and Electrophysiological Study
    Journal of the Neurological Sciences, 1986, 72: 231-242 231 Elsevier Involvement of the Dorsal Root Ganglion in Acute Experimental Allergic Encephalomyelitis in the Lewis Rat A Histological and Electrophysiological Study M. P. Pender and T.A. Sears SUMMARY Histological and electrophysiological studies were performed in Lewis rats with acute experimental allergic encephalomyelitis (EAE) in order to determine the extent of dorsal root ganglion (DRG) involvement. Histological studies showed inflammation and demyelination in both the central nervous system (CNS) and peripheral nervous system (PNS). The DRG was the most affected region of the PNS and its involvement increased caudally. Nerve conduction abnormalities were demonstrated in the regions of the lumbar, sacral or coccygeal DRGs in some of the rats with EAE. However, the overall DRG involvement was much less severe, both histologically and functionally, than what we recently found in rabbits with EAE. Conduction through the lumbar dorsal root entry zone was normal. We conclude that lesions of the afferent pathway to the spinal cord do not contribute significantly to the disturbances of hindlimb motor function in Lewis rats with EAE. Key words: Conduction abnormalities, Demyelination, Dorsal root ganglion, Experimental allergic encephalomyelitis, Lewis rat, Nerve conduction, Pathophysiology INTRODUCTION Experimental allergic encephalomyelitis (EAE) is an auto-immune disease of the nervous system induced by inoculation with central nervous system (CNS) tissue, or CNS myelin basic protein, and adjuvants and is widely studied as a possible model of multiple sclerosis, a human CNS demyelinating disease of unknown aetiology (Raine 1984). It has been induced in many species, but most studies have been done on the small rodents - rats, mice and guinea-pigs.
    [Show full text]