May 18, 2018 Mary Gates Hall

Total Page:16

File Type:pdf, Size:1020Kb

May 18, 2018 Mary Gates Hall May 18, 2018 Mary Gates Hall The Effects of Human Influences on Pollution Run-off POSTER SESSION 1 into Streams Balcony, Easel 104 Maddie Thompson, Sophomore, Marine Biology, Grays Harbor Coll 11:00 AM to 1:00 PM Mentor: Amanda Lyn Gunn, Science and Math Division, Analysis of the Microbial Content of an Invisible Fish Grays Harbor College Barrier Pollution from human influences is a growing problem in the Lauren Thompson, Sophomore, Marine Biology, Grays Chehalis River and tributaries causing deleterious effects on Harbor Coll stream health. Pollution runoff happens when rainfall or snow Mentor: Amanda Lyn Gunn, Science and Math Division, melt pick up and carry human-made or natural pollutants and Grays Harbor College are then deposited into streams, lakes, and rivers. With a Stream microbiomes are composed of diverse collection of better understanding of microbial populations within streams microbes that play an important role in keeping the surround- you can correlate the role that the surrounding environment ing riparian zones and life within the streams healthy and is playing on overall stream health. Stream water has been thriving. The Chehalis River provides habitats in favor of facing a decline in quality from the leading cause of pollution fish spawning and juvenile development, but fish return pop- from agriculture and manufacturer run-offs. Previous studies ulations upstream haves decreased in recent years. The aim have linked increasing industrialization to ecological losses. of this study was to identify and characterize microbes within Pollution entering a stream can influence and alter the abun- the Chehalis River tributaries, in correlation to fish popula- dance and diversity of aquatic life, especially at a microbial tions, that are causing part of an invisible fish barrier. An in- level. Although there have been many studies relating to run- visible fish barrier is an undefined barrier that is blocking or off pollution affecting streams, there are no in-depth studies preventing the return of fish. When water conditions are al- done on the taxonomy and functionality of microbes in ur- tered by human impacts or water quality is poor, it can result ban water ecosystems, so it is important for this to be fur- in microbial communities to shift. These communities can ther investigated. For this project, overall stream health was become harmful and potentially pathogenic to the surround- measure by assessing seven locations along Alder and Fry ing hosts and environment. Microbial identification specifi- creek. Environmental factors, percentage of man-made cov- cally within the stream in relation to fish populations could ering, and potential pollution runoffs were all considered and help to find ways to improve overall water quality for fish analyzed. A stream microbiome analysis was done along all health. This analysis may provide a holistic indicator for sites sampled using 16s sequencing. The microbes present are necessary renovation and restoration of fish passages. Sites a strong indicator of the health of the ecosystem. From this that lack species diversity in their riparian zones, and were information, future studies can draw how to improve stream closer to urbanization, show diversity in potentially harmful restoration efforts based off the abundance and diversity of microbes like Camplyobacter, Sanguibacter and Shewanella, organisms within streams facing variation in levels of human in correlation to low fish population. Continued monitoring impacts. will help correlate trends that are influencing riparian zones, water quality conditions and fish populations during the pro- cess of stream restoration. POSTER SESSION 1 Balcony, Easel 105 11:00 AM to 1:00 PM POSTER SESSION 1 Balcony, Easel 103 11:00 AM to 1:00 PM Undergraduate Research Program 1 www.uw.edu/undergradresearch Evaluation of Stock Selective Fishing Tools in the Lower Fast Kelp Crab Consumption: Implications for Columbia Sub-basin Washington Sea Otters Mary Valentine, Sophomore, Marine biology, Grays Harbor Carter Justis Johnson, Senior, Biology (General), Aquatic & Coll Fishery Sciences Mentor: Amanda Lyn Gunn, Science and Math Division, Mentor: Jessica Hale, School of Aquatic and Fishery Grays Harbor College Sciences Mentor: Adrian Tuohy, Wild Fish Conservancy Mentor: Kristin Laidre, Polar Science Center/APL and Mentor: Aaron Jorgenson, Wild Fish Coservancy School of Aquatic and Fishery Sciences Mentor: Justin Eastman Sea otters (Enhydra lutris), members of the mustelid family, In the Pacific Northwest the Endangered Species Act (ESA) are distributed in the near-shore marine environment along protects wild salmonids from commercial fishing. The cur- the west coast of North America from southern California to rent commercial fishing gear, including gill nets but not lim- Alaska. Sea otters are unique among marine mammals, in ited to, disrupts the recovery of these species because fisher- that they bring all captured prey to the surface to handle and men can not selectively harvest the hatchery fisheries without consume. This behavior allows scientists to directly observe wild salmonids as bycatch, which have high mortality rates. their foraging and estimate energy intake rates based on time Once ESA quotas are met this can effectively shut down com- spent at the surface processing and consuming prey (handling mercial fisheries. The exploration of alternative fishing tools time), prey type and size, and dive time. The foraging be- that can select for certain species will lower bycatch mortality havior of sea otters is observed using standardized methods rates of ESA species, and in turn allow commercial fisheries throughout the sea otter’s North American range. One as- to operate longer. On August 26th through September 29th of sumption made when calculating sea otter energy intake rates 2017 Wild Fish Conservancy conducted follow up research, is that the same prey type of a given size is equivalent across to a 2016 pilot study of Pound nets, in the Lower Columbia regions. However, an anomaly in the handling time of kelp River Sub-Basin. Post release survival rates were evaluated in crabs (Pugettia spp.) has been discovered, where Washing- a modified stock selective pound-net. Using Mark Recapture ton sea otters (Enydra lutris kenyoni) handle kelp crabs 1.5- methodology, with a Passive Integrated Transponder (PIT) 2 times faster than sea otters in California (Enhydra lutris tags, and genetic clippings for later analysis. Survival rates nereies). One hypothesis to explain this difference is that of control specimen to treatment specimen were captured as Washington kelp crabs have a lower edible biomass than kelp they traveled past dams upstream. Data analyzed were total crabs in California, allowing for faster handling times by sea catch, catch per unit effort and covariates of recapture proba- otters. To explore this hypothesis, I collected kelp crabs at bilities. The preliminary results show that fishing with stock two sites on the Washington coast. I measured and compared selective nets can effectively target hatchery fisheries while kelp crab maximum width and edible biomass to test whether successfully releasing ESA listed species, reducing mortal- kelp crabs in Washington are an equivalent sea otter prey item ity rates. In 33 days WFC and a local fisherman captured to kelp crabs in California. Kelp crabs comprise 20% of the and released 7,129 salmonids with a post release survival overall diet of Washington sea otters, so accurately measur- for steelhead and trout ( Oncorhynchus Mykiss) of 94.0%, ing the edible biomass of kelp crabs enhances the precision and 96.6% for Chinook salmon (Oncorhynchus Tshawytscha) of estimating sea otter energy intake rates. Estimating the en- listed as ESA species. Hatchery fisheries of these species ergy intake rate of sea otters provides additional information along with coho salmon (Oncorhynchus kisutch) were effec- on their population health. tively selected with viable commercial quantities. Future sub- set data of genetic clips and a Jolly-Seber analysis will give more precise information of these post-release survival esti- SESSION 1D mates. MARINE ECOLOGY AND FOOD WEBS SESSION 1D Session Moderator: Bonnie Becker, Academic Affairs (Tacoma) MARINE ECOLOGY AND FOOD WEBS MGH 228 12:30 PM to 2:15 PM Session Moderator: Bonnie Becker, Academic Affairs * Note: Titles in order of presentation. (Tacoma) MGH 228 12:30 PM to 2:15 PM * Note: Titles in order of presentation. 2 Are All Herbivores Created Equal? Linking Diet to Consumption across Temperature and Size in Dungeness Morphology in Phytophagous Pacus and Graceful Crabs: Bioenergetic Implications for Jonathan Michael Huie, Junior, Aquatic & Fishery Sciences Ecology and Fisheries Management Mary Gates Scholar, UW Honors Program Grace Rachele Workman, Senior, Aquatic & Fishery Mentor: Adam Summers, Biology Sciences Mentor: Matthew Kolmann, Friday Harbor Labs Mentor: P. Sean McDonald, Program on the Environment Herbivorous fishes feed on stems, leaves, flowers, seeds, Dungeness crabs (Cancer [Metacarcinus] magister) hold fruits, and nuts of diverse aquatic plants, as well as algae. commercial and cultural value in Washington State, yet lit- In the Neotropics, many of these fishes have intricately tied tle is known about the effects of climate change on their ecologies with their prey plant’s life history and facilitate seed population–even less is known about their competitor, the dispersal; including the herbivorous cousins of piranhas, pa- graceful crab (C.[M.] gracilis). To investigate
Recommended publications
  • Effects of Sponge Encrustation on the Swimming Behaviour, Energetics
    Western Washington University Masthead Logo Western CEDAR Environmental Sciences Faculty and Staff Environmental Sciences Publications 6-2002 Effects of Sponge Encrustation on the Swimming Behaviour, Energetics and Morphometry of the Scallop Chlamys Hastata Deborah Anne Donovan Western Washington University, [email protected] Brian L. Bingham Western Washington University, [email protected] Heather M. (Heather Maria) Farren Western Washington University Rodolfo Gallardo University of Maryland Eastern Shore Veronica L. Vigilant Southampton College Follow this and additional works at: https://cedar.wwu.edu/esci_facpubs Part of the Environmental Sciences Commons Recommended Citation Donovan, Deborah Anne; Bingham, Brian L.; Farren, Heather M. (Heather Maria); Gallardo, Rodolfo; and Vigilant, Veronica L., "Effects of Sponge Encrustation on the Swimming Behaviour, Energetics and Morphometry of the Scallop Chlamys Hastata" (2002). Environmental Sciences Faculty and Staff Publications. 2. https://cedar.wwu.edu/esci_facpubs/2 This Article is brought to you for free and open access by the Environmental Sciences at Western CEDAR. It has been accepted for inclusion in Environmental Sciences Faculty and Staff ubP lications by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. J. Mar. Biol. Ass. U. K. >2002), 82,469^476 Printed in the United Kingdom E¡ects of sponge encrustation on the swimming behaviour, energetics and morphometry of the scallop Chlamys hastata ½ O Deborah A. Donovan* , Brian L. Bingham , Heather M. Farren*, Rodolfo GallardoP and Veronica L. Vigilant *Department of Biology, MS 9160, Western Washington University, Bellingham, WA 98225, USA. ODepartment of Environmental Sciences, MS 9081, Western Washington University, Bellingham, WA 98225, USA. P Department of Natural Resources, University of Maryland, Eastern Shore, Princess Anne, MD 21853, USA.
    [Show full text]
  • Do Sea Otters Forage According to Prey’S Nutritional Value?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Institucional da Universidade de Aveiro Universidade de Aveiro Departamento de Biologia 2016 Bárbara Cartagena As lontras-marinhas escolhem as suas presas de da Silva Matos acordo com o valor nutricional? Do sea otters forage according to prey’s nutritional value? DECLARAÇÃO Declaro que este relatório é integralmente da minha autoria, estando devidamente referenciadas as fontes e obras consultadas, bem como identificadas de modo claro as citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de textos publicados, qualquer que seja o meio dessa publicação, incluindo meios eletrónicos, quer de trabalhos académicos. Universidade de Aveiro Departamento de Biologia 2016 Bárbara Cartagena da As lontras-marinhas escolhem as suas presas de Silva Matos acordo com o valor nutricional? Do sea otters forage according to prey’s nutritional value? Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Ecologia Aplicada, realizada sob a orientação científica da Doutora Heidi Christine Pearson, Professora Auxiliar da University of Alaska Southeast (Alasca, Estados Unidos da América) e do Doutor Carlos Manuel Martins Santos Fonseca, Professor Associado com Agregação do Departamento de Biologia da Universidade de Aveiro (Aveiro, Portugal). Esta pesquisa foi realizada com o apoio financeiro da bolsa de investigação Fulbright Portugal. “Two years he walks the earth. No phone, no pool, no pets, no cigarettes. Ultimate freedom. An extremist. An aesthetic voyager whose home is the road. Escaped from Atlanta. Thou shalt not return, 'cause "the West is the best." And now after two rambling years comes the final and greatest adventure.
    [Show full text]
  • Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
    EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain.
    [Show full text]
  • MOLLUSCAN PALEONTOLOGY of the PLIOCENE-PLEISTOCENE LOWER SAUGUS FORMATION, SOUTHERN CALIFORNIA by Lindsey T
    PAGE 16 AMERICAN CONCHOLOGIST VOLUME 19(4) MOLLUSCAN PALEONTOLOGY OF THE PLIOCENE-PLEISTOCENE LOWER SAUGUS FORMATION, SOUTHERN CALIFORNIA by Lindsey T. Groves With the assistance of a generous COA research grant in 1987 to help with field and photographic expenses, I completed my Master of Science thesis in late 1990 at California State University, Northridge. In my work on the paleontology of the lower Saugus Formation, I com- pletely documented a rich invertebrate fauna of Pliocene-Pleistocene age through illustrations and extensive synonymies. I also included sections on stratigraphy, paleoenvironment, paleobiogeography, geo- logic age, and correlation of the lower Saugus Formation to others of similar age in central and southern California. My study area was in the eastern Santa Susana Mountains in Los Angeles and Ventura Counties (Fig. 1). Because most of this area is on private property, permission from land owners was required prior to entry. The richest fossiliferous deposit of the lower Saugus Formation is located in Gillibrand Quarry north of Simi Valley, California. From this locality nearly 89% of the total number of fossil species were collected from a particularly rich horizon informally named the "Pecten bed" for the abundant specimens of Patinopecten healeyi (Arnold, 1906) and Pecten (Pecten) bellus (Conrad, 1857). This locality is interpreted to have been deposited as an embayed channel and may represent a faunal community. Because of excellent preservation displayed by many specimens, post-mortem transport was probably 2.1 minimal. r LAcMlP = LAcMjP Fossils of the lower Saugus Formation are predominantly mollus- 11 can and include 43 bivalve species, 49 gastropod species, and one UaisT scaphopod species (Table 1).
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Molluscs: Bivalvia Laura A
    I Molluscs: Bivalvia Laura A. Brink The bivalves (also known as lamellibranchs or pelecypods) include such groups as the clams, mussels, scallops, and oysters. The class Bivalvia is one of the largest groups of invertebrates on the Pacific Northwest coast, with well over 150 species encompassing nine orders and 42 families (Table 1).Despite the fact that this class of mollusc is well represented in the Pacific Northwest, the larvae of only a few species have been identified and described in the scientific literature. The larvae of only 15 of the more common bivalves are described in this chapter. Six of these are introductions from the East Coast. There has been quite a bit of work aimed at rearing West Coast bivalve larvae in the lab, but this has lead to few larval descriptions. Reproduction and Development Most marine bivalves, like many marine invertebrates, are broadcast spawners (e.g., Crassostrea gigas, Macoma balthica, and Mya arenaria,); the males expel sperm into the seawater while females expel their eggs (Fig. 1).Fertilization of an egg by a sperm occurs within the water column. In some species, fertilization occurs within the female, with the zygotes then text continues on page 134 Fig. I. Generalized life cycle of marine bivalves (not to scale). 130 Identification Guide to Larval Marine Invertebrates ofthe Pacific Northwest Table 1. Species in the class Bivalvia from the Pacific Northwest (local species list from Kozloff, 1996). Species in bold indicate larvae described in this chapter. Order, Family Species Life References for Larval Descriptions History1 Nuculoida Nuculidae Nucula tenuis Acila castrensis FSP Strathmann, 1987; Zardus and Morse, 1998 Nuculanidae Nuculana harnata Nuculana rninuta Nuculana cellutita Yoldiidae Yoldia arnygdalea Yoldia scissurata Yoldia thraciaeforrnis Hutchings and Haedrich, 1984 Yoldia rnyalis Solemyoida Solemyidae Solemya reidi FSP Gustafson and Reid.
    [Show full text]
  • Seamap Environmental and Biological Atlas of the Gulf of Mexico, 2017
    environmental and biological atlas of the gulf of mexico 2017 gulf states marine fisheries commission number 284 february 2019 seamap SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2017 Edited by Jeffrey K. Rester Gulf States Marine Fisheries Commission Manuscript Design and Layout Ashley P. Lott Gulf States Marine Fisheries Commission GULF STATES MARINE FISHERIES COMMISSION FEBRUARY 2019 NUMBER 284 This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA16NMFS4350111. GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS ALABAMA Chris Blankenship John Roussel Alabama Department of Conservation 1221 Plains Port Hudson Road and Natural Resources Zachary, LA 70791 64 North Union Street Montgomery, AL 36130-1901 MISSISSIPPI Joe Spraggins, Executive Director Representative Steve McMillan Mississippi Department of Marine Resources P.O. Box 337 1141 Bayview Avenue Bay Minette, AL 36507 Biloxi, MS 39530 Chris Nelson TBA Bon Secour Fisheries, Inc. P.O. Box 60 Joe Gill, Jr. Bon Secour, AL 36511 Joe Gill Consulting, LLC 910 Desoto Street FLORIDA Ocean Springs, MS 39566-0535 Eric Sutton FL Fish and Wildlife Conservation Commission TEXAS 620 South Meridian Street Carter Smith, Executive Director Tallahassee, FL 32399-1600 Texas Parks and Wildlife Department 4200 Smith School Road Representative Jay Trumbull Austin, TX 78744 State of Florida House of Representatives 402 South Monroe Street Troy B. Williamson, II Tallahassee, FL 32399 P.O. Box 967 Corpus Christi, TX 78403 TBA Representative Wayne Faircloth LOUISIANA Texas House of Representatives Jack Montoucet, Secretary 2121 Market Street, Suite 205 LA Department of Wildlife and Fisheries Galveston, TX 77550 P.O.
    [Show full text]
  • Defense Mechanism and Feeding Behavior of Pteraster Tesselatus Ives (Echinodermata, Asteroidea)
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1976-08-12 Defense mechanism and feeding behavior of Pteraster tesselatus Ives (Echinodermata, Asteroidea) James Milton Nance Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Nance, James Milton, "Defense mechanism and feeding behavior of Pteraster tesselatus Ives (Echinodermata, Asteroidea)" (1976). Theses and Dissertations. 7836. https://scholarsarchive.byu.edu/etd/7836 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. DEFENSE MECHANISM AND FEEDING BEHAVIOR OF PTEP.ASTER TESSELATUS IVES (ECHINODER.1v!ATA, ASTEROIDEA) A Manuscript of a Journal Article Presented to the Department of Zoology Brigham Young University In Partial Fulfillment of the Requirements for the Degree Master of Science by James Milton Nance December 1976 This manuscript, by James M. Nance is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the thesis requirement for the degree of Master of Science. Date ii ACKNOWLEDGMENTS I express my deepest appreciation to Dr. Lee F. Braithwaite for his friendship, academic help, and financial assistance throughout my graduate studies at Brigham Young University. I also extend my thanks to Dr. Kimball T. Harper and Dr. James R. Barnes for their guidance and suggestions during the writing of this thesis. I am grateful to Dr. James R. Palmieri who made the histochemical study possible, and to Dr.
    [Show full text]
  • Enteroctopus Dofleini) and That E
    THE EFFECT OF OCTOPUS PREDATION ON A SPONGE-SCALLOP ASSOCIATION Thomas J. Ewing , Kirt L. Onthank and David L. Cowles Walla Walla University Department of Biological Sciences ABSTRACT In the Puget Sound the scallop Chlamys hastata is often found with its valves encrusted with sponges. Scallops have been thought to benefit from this association by protection from sea star predation, but this idea has not been well supported by empirical evidence. Scallops have a highly effective swimming escape response and are rarely found to fall prey to sea stars in the field. Consequently, a clear benefit to the scallop to preserve the relationship is lacking. We propose that octopuses could provide the predation pressure to maintain this relationship. Two condi- tions must first be met for this hypothesis to be supported: 1) Octopuses eat a large quantity of scallops and 2) Octo- puses must be less likely to consume scallops encrusted with sponges than unencrusted scallops. We found that Chlamys hastata may comprise as much as one-third of the diet of giant Pacific octopus (Enteroctopus dofleini) and that E. dofleini is over twice as likely to choose an unencrusted scallop over an encrusted one. While scallops are a smaller portion of the diet of O. rubescens this species is five times as likely to consume scallops without sponge than those with. This provides evidence the octopuses may provide the adaptive pressure that maintains the scallop -sponge symbiosis. INTRODUCTION The two most common species of scallop in the Puget Sound and Salish Sea area of Washington State are Chlamys hastata and Chlamys rubida.
    [Show full text]
  • Comparative Morphology of the Concave Mirror Eyes of Scallops (Pectinoidea)*
    Amer. Malac. Bull. 26: 27-33 (2008) Comparative morphology of the concave mirror eyes of scallops (Pectinoidea)* Daniel I. Speiser1 and Sönke Johnsen2 1 Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, U.S.A., [email protected] 2 Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, U.S.A., [email protected] Abstract: The unique, double-retina, concave mirror eyes of scallops are abundant along the valve mantle margins. Scallops have the most acute vision among the bivalve molluscs, but little is known about how eyes vary between scallop species. We examined eye morphology by immunofluorescent labeling and confocal microscopy and calculated optical resolution and sensitivity for the swimming scallops Amusium balloti (Bernardi, 1861), Placopecten magellenicus (Gmelin, 1791), Argopecten irradians (Lamarck, 1819), Chlamys hastata (Sow- erby, 1842), and Chlamys rubida (Hinds, 1845) and the sessile scallops Crassadoma gigantea (Gray, 1825) and Spondylus americanus (Hermann, 1781). We found that eye morphology varied considerably between scallop species. The eyes of A. balloti and P. magellenicus had relatively large lenses and small gaps between the retinas and mirror, making them appear similar to those described previously for Pecten maximus (Linnaeus, 1758). In contrast, the other five species we examined had eyes with relatively small lenses and large gaps between the retinas and mirror. We also found evidence that swimming scallops may have better vision than non-swimmers. Swimming species had proximal retinas with inter-receptor angles between 1.0 ± 0.1 (A. balloti) and 2.7 ± 0.3° (C. rubida), while sessile species had proximal retinas with inter-receptor angles between 3.2 ± 0.2 (C.
    [Show full text]
  • Glass Sponge Aggregations in Howe Sound
    Canadian Science Advisory Secretariat Pacific Region Science Response 2018/032 GLASS SPONGE AGGREGATIONS IN HOWE SOUND: LOCATIONS, REEF STATUS, AND ECOLOGICAL SIGNIFICANCE ASSESSMENT Context The protection of benthic communities and features falls within the mandate of the Department of Fisheries and Oceans (DFO) at the national level under the Oceans Act, Fisheries Act, and under ratified international agreements. The plan to meet conservation targets includes advancing Other Effective Area-Based Conservation Measures (OEABCM), such as fishing closures, to protect sensitive sponge and coral aggregations. Glass sponge reefs are unique habitats found along the Pacific coast of Canada and the United States with historic, ecological, and economic value. They link benthic and pelagic environments by playing important roles in filtration and carbon and nitrogen processing, and acting as silica sinks (Chu et al. 2011, Tréguer and De La Rocha 2013, Kahn et al. 2015). They also form habitat for diverse communities of invertebrates and fish, including those of economic importance (Cook et al. 2008, Chu and Leys 2010, Dunham et al. 2015, 2018). Over the past 15 years, nine glass sponge reef complexes were discovered and mapped in the Strait of Georgia and Howe Sound using remote sensing (Conway et al. 2004, 2005, and 2007) and subsequently ground-truthed by DFO Science using standardized visual survey methods in 2012-2013. In 2014, DFO requested that fishers using bottom-contact gear voluntarily avoid these areas while DFO consulted on formal protection measures. After reviewing important input from the consultation process with First Nations, commercial and recreational fishers, and conservation organizations, formal bottom-contact fishing closures were established, effective June 12, 2015.
    [Show full text]
  • Puerto Rico E Islas Vírgenes
    Félix A. Grana Raffucci. Junio, 2007. NOMENCLATURA DE LOS ORGANISMOS ACUÁTICOS Y MARINOS DE PUERTO RICO E ISLAS VÍRGENES. Volumen 11: Peces de Puerto Rico e Islas Vírgenes. Parte 2. Clase Actinopterygii Órdenes Perciformes a Tetraodontiformes Referencias CLAVE DE COMENTARIOS: D= especie reportada en cuerpos de agua dulce S= especie reportada en estuarios C= especie reportada en aguas sobre las plataformas isleñas de 200 m o menos de profundidad O= especies oceánicas o reportadas a mas de 200 m de profundidad B= especie de hábitos bentónicos E= especie de hábitos demersales P= especies de hábitos pelágicos F= especie de valor pesquero A= especie incluída en el comercio acuarista I= especie exótica reportada en cuerpos de agua Números: indican la profundidad, en metros, en la que la especie ha sido reportada p= especie reportada de Puerto Rico u= especie reportada de las Islas Vírgenes de EE. UU. b= especie reportada de las Islas Vírgenes Británicas int= especie encontrada en pozas mareales INDICE DE FAMILIAS DEL VOLUMEN II Acanthuridae Acanthurus Paracanthurus Achiridae Achirus Gymnachirus Trinectes Acropomatidae Synagrops Verilus Apogonidae Apogon Astrapogon Phaeoptyx Ariommatidae Ariomma Balistidae Balistes Canthidermis Melichthys Xanthichthys Bathyclupeidae Bathyclupea Blenniidae Entomacrodus Hypleurochilus Hypsoblennius Lupinoblennius Ophioblennius Parablennius Scartella Bothidae Bothus Chascanopsetta Monolene Trichopsetta Bramidae Brama Eumegistus Pterycombus Taractichthys Callyonimidae Diplogrammus Foetorepus Paradiplogrammus Carangidae
    [Show full text]