Abstract Book: Software Development and Layout: Rocco De Marco

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book: Software Development and Layout: Rocco De Marco Welcome Welcome to Camerino! The conference organizers, together with the University of Camerino and all the institutional sponsors of the inter- national XAFS 14 conference are proud to have you all again in Italy, site of the first international conference on EXAFS and Near Edge structure held in Frascati, 1982, after the initial weekend meeting taking place at Daresbury in 1981. After more than three decades, the world, and science of course, changed very much. The x-ray absorption spec- troscopy (XAS) transformed from a “new” and sometimes misused technique to a more mature tool for deeper and deeper investigations of structural and electronic properties of matter. The potential of this technique remains now particularly high and new perspectives are opened by advances in experimental and theoretical methods and by new radiation sources. The continuous interest in developing and using XAS is clearly shown by the success of the XAFS conference series and by this conference in particular, with about 500 participants from all over the world regularly registered, probably the largest participation ever recorded for this event. An innovative format of the conference containing symposia on specific topics of large interest, the presence of numerous excellent invited speakers, and the extremely high number of first-class contributed abstracts, guarantee a truly interesting scientific program which we are proud of. The choice of Camerino as a XAFS conference site deserves also a few lines of comments. Camerino is a quiet “hidden” historical town, outside of the usual touristic routes in Italy, which certainly deserves the journey, as you may soon appreciate. Being one of the oldest Universities in Italy and Europe, it hosted also, since the 70s, several researchers working around the exploitation of synchrotron radiation of the ADONE storage ring in Frascati. The XAS group in Camerino, in charge of organizing this conference, grew about 20 years ago around this original seed. In recent times, the University of Camerino followed the general negative trend related to the decrease of resources devoted to basic research and to the educational system, but both a high-level scientific and teaching activities still stand with about 10000 students attending various courses in different fields. You will see, looking at the good University infrastructures and experienced personnel, at the wonderful landscapes and old monuments, tasting the genuine food and meeting this wonderful people that it is worthwhile to keep a strong scientific tradition in this place. The Marche region around Camerino offers a variety of opportunities for tourism ranging from the seaside to the hills and mountains of the interior, with many nice historical towns. This is a lively region that has developed a system of small to medium enterprises featuring a particularly high capacity for creativity in fashion and manufacturing ranging from clothing to home appliances, without forgetting the need of a high-level educational system. We are confident that you will appreciate the nice and friendly environment of this conference, that can stimulate many occasions of fruitful meeting and conversations among scientists all day long and while attending pleasant and interesting social events. We hereby welcome you to an exciting conference that we hope you will all remember at the same time as fruitful and pleasant. On behalf of the Organizing Committee Andrea Di Cicco Chairman of the Conference 1 Chairman of the conference Andrea Di Cicco Co-chair Adriano Filipponi International advisory committee Klaus Baberschke, Germany Grant Bunker, USA Majed Chergui, Switzerland Frank De Groot, Netherland John Evans, UK Roger Falcone, USA Francois Farges, France Ronald Frahm, Germany Joaquin Garcia, Spain Graham N. George, Canada Pieter Glatzel, France Britt Hedman, USA Elisabeth Holub-Krappe, Germany Peter A. Lay, Australia Alain Manceau, France Alfons Molenbroek, Denmark Calogero R. Natoli, Italy Matt Newville, USA Hiroyuki Oyanagi, Japan Bruce Ravel, USA John Rehr, USA Mark Ridgway, Australia Dipankar Das Sarma, India Tsun-Kong Sham, Canada Alexander Soldatov, Russia Toshihiko Yokoyama, Japan Ziyu Wu, China Program committee Maurizio Benfatto, LNF-INFN Federico Boscherini, Universit`adi Bologna Paola D’Angelo, Universit`adi Roma “La Sapienza” Paolo Fornasini, Universit`adi Trento Carlo Lamberti, Universit`adi Torino Silvia Morante, Universit`adi Roma Tor Vergata Calogero Renzo Natoli, LNF-INFN Simona Quartieri, Universit`adi Messina Settimio Mobilio, Universit`adi Roma Tre Giorgio Paolucci, ELETTRA, Trieste Giovanni Stefani, Universit`adi Roma Tre Local organizing committee Emiliano Principi Angela Trapananti Rocco De Marco Marco Minicucci Yvonne Soldo Andrea Perali Agnieszka Witkowska Francesco Nobili Mamatimin Abbas Giorgia Greco Eleonora Paris Gabriele Giuli Roberto Gunnella Secretary Fiorella Paino Valeria Quacquarini Lia Sabatini Rita Bertelli Romina Skabar Technical Support Franco Bizzarri Tiziano Gabrielli Venanzo Mocci Giuseppe Monteneri Additional Staff M. Rita Cicconi Erika Giangrisostomi Fabio Iesari Valentina Migliorati Marco Murri Ali Mushtaq M. Alberto Picchio Leonardo Properzi Shah Said Karim Lubna Tabassam Andrea Zitolo University support and communications Egizia Marzocco Milena Rossini Michela Tozzi Francesca Magni Graphics and photos Monica Straini Giulio Gentilucci Marco Montecchiari Mario Severini 2 SUNDAY 26 13.00/23.00 19.00/23.00 Reception at Benedetto XIII Welcome party at the Ducal Palace MONDAY 27 Ge2Sb2Te5 ( GST) correlation between the Ag site and the Location: Benedetto XIII 17.00 Spezia Riccardo photoluminescence emission. Molecular dynamics to rationalize EXAFS P2.2 Extreme conditions Allara e Grosso 8.30 Conference opening experiments: a dynamical model explaining 18.00 Itié Jean-Paul hydration behaviour across the lanthanoids(III) High pressure x-ray absorption 9.00/10.30 Plenary session M1 series spectroscopy: energy dispersive versus 9.00 Sarma D. D. 17.15 Migliorati Valentina classical set-up EXAFS and NEXAFS studies of strongly Ion hydration in high-density water 18.20 Baudelet François correlated electron systems P1.3 Instrumentation Aula Aranjo Ruiz Magnetism and structure under extreme 9.45 Kotani Akio 15.30 Frenkel Anatoly condition Theoretical and experimental study of high- Combined XAFS/XRD instrument at the X18A 18.40 Pellicer-Porres Julio magnetic-field XMCD spectra at the L2,3 beamline at NSLS for in situ, time-resolved X-ray absorption study of CuGaO2 and absorption edges of mixed-valence rare-earth catalysis research CuAlO2 delafossites under high pressure compounds 15.50 Fonda Emiliano 19.00 Aquilanti Giuliana First results at SAMBA the SOLEIL hard x-ray Melting in the diamond anvil cell using 11.00/13.00 Symposium S1 beamline for EXAFS and QEXAFS experiments energy dispersive XAS Electronic correlations, corehole interaction and 16.10 Kleimenov Evgueni 19.15 Ramos Aline relaxation effects in x-ray absorption HERFD XAS / RIXS spectrometer Pressure induced metal-insulator transition spectra 16.30 Rocca Francesco in LaMnO3 11.00 Kruger Peter Nano-scale X-ray absorption spectroscopy 19.30 Pylkkänen Tuomas Multiplet couplings and band structure in using XEOL-SNOM detection mode High-pressure ices VI-VIII studied with x-ray L2,3-edge absorption through 16.45 Silversmit Geert Raman scattering multi-channel multiple scattering theory Polycapillary based µ-XAS and 19.45 Peyrusse Olivier 11.25 Taranukhina Anna confocal µ-XANES at a bending K-edge absorption spectra in Warm Dense Multichannel Green's function multiple magnet source of the ESRF Matter scattering calculations of x-ray absorption 17.00 Marcelli Augusto P2.3 Chemistry Aula Aranjo Ruiz 11.50 Ebert Hubert Time-resolved simultaneous spectroscopies 18.00 Frank Patrick Theoretical description of X-ray absorption as a probe of physical-chemical processes The XAS model of dissolved Cu(II) and its in correlated magnetic solids 17.15 Zhang Ke significance to biological electron transfer 12.15 Ikeno Hidekazu Very sensitive X-ray fluorescence analyzer 18.30 Giorgetti Marco Ab-initio CI calculations for 3d transition detector EXAFS and XANES Simulations of Fe/Co metal L2,3 x-ray absorption spectra P1.4 Theory I Aula Betti hexacyanoferrate spectra by GNXAS and 12.40 Shirley Eric 15.30 Fujikawa Takashi MXAN Exotic effects in near-edge spectra Relativistic many-body XMCD theory 18.45 Tenderholt Adam including core degenerate effects Sulfur K-edge x-ray absorption spectroscopy 11.30/13.30 Poster Session PS1 15.50 Harada Isao and density functional theory calculations Theory of XAS and XMCD for field-controlled on molybdenum tris(dithiolene) complexes: 15.30/17.30 Location: Ducal Palace valence mixed states in RE compounds XAS as a probe of electronic and geometric P1.1 Material Science I Sala La Muta 16.10 Hatada Keisuke structures 15.30 Wei Shiqiang Full potential multiple scattering for core 19.00 Provost Karine Experimental and theoretical investigations electron spectroscopies Coupling CP-MD simulations and x-ray on ferromagnetic nature of dilute magnetic 16.30 Joly Yves absorption spectroscopy: exploring the semiconductors Self-consistency, Hubbard, spin-orbit and structure of oxaliplatin in aqueous solution. 15.50 Lawniczak-Jablonska Krystyna other advances in the FDMNES code to 19.15 Jalilehvand Farideh The influence of high temperature annealing simulate XANES and RXD experiments Cadmium(II) complex formation with procedures on the location of Mn inside the 16.50 Sébilleau Didier cysteine,
Recommended publications
  • Design of Large Space Structures Derived from Line Geometry Principles
    DESIGN OF LARGE SPACE STRUCTURES DERIVED FROM LINE GEOMETRY PRINCIPLES By PATRICK J. MCGINLEY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Patrick J. McGinley I would like to dedicate this work to Dr. Joseph Duffy - mentor, friend, and inspiration. My thanks also go out to my parents, Thomas and Lorraine, for everything they have taught me, and my friends, especially Byron, Connie, and Richard, for all their support. ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Carl D. Crane, III, the members of my advisory committee, Dr. John Schueller and Dr. John Ziegert, as well as Dr. Joseph Rooney, for their help and guidance during my time at UF, and especially their understanding during a difficult last semester. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT...................................................................................................................... xii CHAPTER 1 INTRODUCTION ............................................................................................................1 2 BACKGROUND ..............................................................................................................5
    [Show full text]
  • An,4B Tnitt{:} Mûleculaã.Orbital .A-Pproact{
    T}IE STEREÛC}{E}4ISTRY ÛF CUg- ÛXYSALT MNNERALS AN,4B TNITT{:} MÛLECULAÃ.ORBITAL .A-PPROACT{ Þ\¡ PETER C. EL-RNS A Thesis Subrnitted to the Faculty of Graduate Studies in Pa-rtial Fulfilment, of the Requireraents for the Ðegree of ÐOCT'OR OF THiLOSOPHY Ðepartment of Geological Sciences University of Manitoba Winnipeg, Manitoba @ Copyright by Peter Carman Bu¡¡rs, 1994 WWW National Library B¡bliothèqLre naiioftale W'r @ of Canada du Canâda Acquisitions and Direction des acquisitions et B¡bf iographic Seruices Branch des servìces bibl¡ographiques 395 Wellington Slreet 395, rue WeJlingron Otlawa, Onta¡io Onawa (Oniar¡o) K1A ON4 K1A ON4 aùtLle Na¡e èlùerce T'he at¡th@ü' has graü-lted aãx Ë*'au¡tec¡r a aaaondé s"!ne licemce írrevoeabIe nÕrÌ-ex6t¿.Esive ¡¡eemcc inr¡ávoaab[e et ntm exc[usíve allowing t['re F,Iationat Lihrany of penmrettant à $a Eihliothèque Camada tÕ reprtdL¡ce, åoana, natiomale du Canada de distribute Õr sell copíes of reprods.rãre, prêter, distribuer ou his/hen thesís by any sneams arsd vendre des aopies de sa thèse in any fonm or fonnlat, rnaking de quelque rna¡rière et sous tÍ'lis tl'lesis available to E¡'¡terested qt¡elque forrne que ce soit poun persons. rnettre des exenarplaires de cette thèse à [a disposition des personnes intéressées. T'[re a¡.¡t['ror retains ownershíp of E-'a¡.¡teun conserve la propriété du the eopyrig[et im hrislher tÍresis" droit d'auteun quri protège sa Ê.deít[rer ttre thesís sror substantåa[ t['rèse. hdå 8a thèse ni des extnaits extnacts fnonn it may be pnin-lted or substantiels de celle-ci ne otlrerwíse neproduced wãtå'¡or¡t doívent être ãrrrpria'nés oL¡ [rüs/her pernnlssiom.
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Outline of Crystal Field Theory Bums, R
    6 1 Introduction 1.3 Background reading 2 Bethe, H. (1929) Splitting of terms in crystals. (Termsaufspaltung in Kristallen.) Ann. Phys., 3, 133-206. [Trans[.: Cons]lltants Bureau, New York.] Outline of crystal field theory Bums, R. G., Clark, R. H. & Fyfe, W. S. (1964) Crystal field theory and applications to problems in geochemistry. In Chemistry of the Earth's Crust, Proceedings of the Vemadsky Centennial Symposium. (A. P. Vinogradov, ed.; Science Press, Moscow), 2, 88-106. [Trans/.: Israel Progr. Sci. Transl., Jerusalem, pp. 93-112 (1967).] Bums, R. .~· & Fyfe, W. S. (1967a) Crystal field theory and the geochemistry of transition elements. In Researches in Geochemistry. (P. H. Abelson, ed.; J. Wiley & Son, New York), 2, 259-85. Bums, R. G. (1985) Thermodynamic data from crystal field spectra. In Macroscopic to Microscopic. Atomic Environments to Mineral Thermodynamics. (S. W. Kieffer & A. Navrotsky, eds; Mineral. Soc. Amer. Publ.), Rev. Mineral., 14, 277-316. Orgel, L. E. (1952) The effects of crystal fields on the properties of transition metal Crystal field theory gives a survey of the effects of electric fields of ions. J. Chern. Soc., pp. 4756-61. definite symmetries on an atom in a crystal structure. Williams, R. J.P. (1959) Deposition of trace elements in a basic magma. Nature, 184, - -A direct physical confirmation should be obtainable by 44. analysis of the spectra of crystals. H. A. Bethe, Annalen der Physik, 3, 206 (1929) 2.1 Introduction Crystal field theory describes the origins and consequences of interactions of the surroundings on the orbital energy levels of a transition metal ion.
    [Show full text]
  • Problems with Hints
    MATHEMATICS 5 points: Each face of the octahedron ABCDEF in the Figure is an equilateral triangle with side a. ​ ​ Caterpillar named Plato originally sits in the center of the face ABC, and wants to move to the center of face CDF. Plato can only move along the octahedron surface. What is the shortest distance that the Caterpillar has to travel to the destination? Hint: Imagine that you want to fold the octahedron out of paper. In order to ​ ​ do this, you would have to cut out a special shape. Try to construct this shape, and identify on your picture the points between which the Plato has to travel. 10 points: Each face of the elongated octahedron ABCDEF in the Figure is an isosceles triangle with base b and sides a (for instance, AB=AC=a and BC=b). Caterpillar named Plato ​ ​ ​ ​ ​ originally sits at the vertex B and wants to move to the opposite vertex D (BD is the diagonal of the square BCDE). Plato can only move on the octahedron surface. What is the shortest distance that the Caterpillar has to travel to the destination? Hint: Imagine that you want to fold the octahedron out of paper. In order to ​ ​ do this, you would have to cut out a special shape. Try to construct this shape, and identify on your picture the points between which the Plato has to travel. PHYSICS 5 points: Two wooden blocks of the same mass are glued together. The composite block is floating in water. What part of it is submerged into water if the densities of blocks are 500 kg/m3 and 1100 kg/m3, respectively? Hint: Try to equate the Archimedean buoyancy force to the total weight of the ​ composite block.
    [Show full text]
  • The Site Occupancy Assessment in Beryl Based on Bond-Length Constraints
    minerals Article The Site Occupancy Assessment in Beryl Based on Bond-Length Constraints Peter Baˇcík 1,2,* and Jana Fridrichová 1 1 Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkoviˇcova6, SK-842 15 Bratislava, Slovakia; [email protected] 2 Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 28 Bratislava, Slovakia * Correspondence: [email protected] Received: 20 September 2019; Accepted: 15 October 2019; Published: 18 October 2019 Abstract: The site preference for each cation and site in beryl based on bond-length calculations was determined and compared with analytical data. Tetrahedral SiO4 six-membered rings normally have no substitutions which results from very compact Si4+–O bonds in tetrahedra. Any substitution except Be would require significant tetrahedral ring distortion. The Be tetrahedron should also be negligibly substituted based on the bond-valence calculation; the tetrahedral Li–O bond length is almost 20% larger than Be2+–O. Similar or smaller bond lengths were calculated for Cr3+,V3+, Fe3+, Fe2+, Mn3+, Mg2+, and Al3+, which can substitute for Be but also can occupy a neighboring tetrahedrally coordinated site which is completely vacant in the full Be occupancy. The octahedral site is also very compressed due to dominant Al with short bond lengths; any substitution results in octahedron expansion. There are two channel sites in beryl: the smaller 2b site can be occupied by Na+, Ca2+, Li+, and REE3+ (Rare Earth Elements); Fe2+ and Fe3+ are too small; K+, Cs+, Rb+, and Ba2+ are too large. The channel 2a-site average bond length is 3.38 Å which allows the presence of + simple molecules such as H2O, CO2, or NH4 and the large-sized cations-preferring Cs .
    [Show full text]
  • Study of Solid State Reactions
    STUDY OF SOLID STATE REACTIONS dui^ns THESIS SUBMITTED FOR THE AWARD OF THE DEGREE Of IBoctor of $I|tlQ£(optip IN CHEMISTRY BY HUMA NASEER DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 2005 ;:r.jt* *^'5'^ Fed in Computef -^^M:TB s:m.mB/ ^^'^i.''''^ '^>^% -. :' :> J*^ '"Sfp ^«9 %)^ 061-^ Summary Solid electrolytes are a class of materials exhibiting high ionic conductivity comparable to those of strong liquid electrolj'tes. Solid state ionics is now a thrust area because of ever increasing demand of solid electrolytes and probably the most widely used method for the preparation of solid electrolyte is the direct reaction in the solid state called solid state reaction. Considerable basic work on the theory of solid- solid interaction are reported over the years, particularly in sixties as a result of the emergence of solid devices. This thesis entitled "Study of solid state reactions" deals with study of the following four reactioirln solid state. 1. Ag2Hgl4:CuI 2. CuW04:Li2C03 3. Cu2Cdl4:Hgl2 4. Cu2Cdl4:HgCl2 Kinetics and mechanism of these reactions in solid state were studied by electrical Conductivity measurements, thermal Measurements, chemical & X-ray diffraction analysis. Electrical Conductivity Measurements Pellets for the electrical conductivity measurements were made by pouring the sample powders into a stainless steel die and pressing at a pressure of 4 tonnes with the help of a hydraulic pressure (spectra lab, model SL-89). Pellets were found to be of the same colour as that of the original powders, higher pressure, however, were found to cause uneven darkening in the pellets. All samples were annealed at 100°C for 12 hours before measurements to eliminate any grain boundar>' effect.
    [Show full text]
  • Geometrydiscrete & Computational © 1999 Springer-Verlag New York Inc
    Discrete Comput Geom 21:233–242 (1999) GeometryDiscrete & Computational © 1999 Springer-Verlag New York Inc. On the Kissing Numbers of Some Special Convex Bodies¤ D. G. Larman1 and C. Zong1;2 1Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England [email protected] 2Institute of Mathematics, The Chinese Acadamy of Sciences, Beijing 100080, People’s Republic of China [email protected] Abstract. In this note the kissing numbers of octahedra, rhombic dodecahedra and elon- gated octahedra are determined. In high dimensions, an exponential lower bound for the kissing numbers of superballs is achieved. Introduction Let K be an n-dimensional convex body. As usual, we denote the translative kissing number and the lattice kissing number of K by N.K / and N ¤.K /, respectively. In other words, N.K / is the maximal number of nonoverlapping translates of K which can be brought into contact with K , and N ¤.K / is the similar number when the translates are taken from a lattice packing of K . To determine the values of N.K / and N ¤.K / for a convex body K are important and difficult problems in the study of packings. These numbers, especially for balls, have been studied by many well-known mathematicians such as Newton, Minkowski, Hadwiger, van der Waerden, Shannon, Leech, Gruber, Hlawka, Kabatjanski, Leven˘stein, Odlyzko, Rankin, Rogers, Sloane, Watson, Wyner and many others. For details refer to [1]–[3] and [11]. In this note we determine the kissing numbers of octahedra, rhombic dodecahedra and elongated octahedra. In fact, besides balls and cylinders, they are the only convex bodies whose kissing numbers are exactly known.
    [Show full text]
  • Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination
    Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination Marjorie Senechal Editor Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination with George Fleck and Stan Sherer 123 Editor Marjorie Senechal Department of Mathematics and Statistics Smith College Northampton, MA, USA ISBN 978-0-387-92713-8 ISBN 978-0-387-92714-5 (eBook) DOI 10.1007/978-0-387-92714-5 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013932331 Mathematics Subject Classification: 51-01, 51-02, 51A25, 51M20, 00A06, 00A69, 01-01 © Marjorie Senechal 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publishers location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Download Author Version (PDF)
    Nanoscale Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/nanoscale Page 1 of 12 Please doNanoscale not adjust margins Journal Name ARTICLE Morphology Evolution of Single-Crystalline Hematite Nanocrystals: Magnetically Recoverable Nanocatalyst for Received 00th January 20xx, Accepted 00th January 20xx Enhanced Facets-Driven Photoredox Activity a b b a DOI: 10.1039/x0xx00000x Astam K. Patra, Sudipta K. Kundu, Asim Bhaumik, Dukjoon Kim * www.rsc.org/ We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine morphology and crystallographic orientations of each nanocrystal and its exposed facets.
    [Show full text]
  • Environmental Parametrics 2 10.0 Environmental Parametrics 2 | Kim + Lee
    10 ENVIRONMENTAL PARAMETRICS 2 10.0 ENVIRONMENTAL PARAMETRICS 2 | KIM + LEE A SYSTEMIZED AGGREGATION WITH GENERATIVE GROWTH MECHANISM IN SOLAR ENVIRONMENT Dongil Kim ABSTRACT KL’IP; University of California, Berkeley The paper demonstrates a work-in-progress research on an agent-based aggregation Seojoo Lee model for architectural applications with a system of assembly based on environmental KL’IP; University of California, Berkeley data acting as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on the Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module at local scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systemized rule set (Figure 1). Figure 1 Fully aggregated model in response to solar vector. 406_407 ACADIA 2015 | COMPUTATIONAL ECOLOGIES 1 INTRODUCTION 1.1 GENERATIVE DESIGN Generative design is a design methodology in which the output is generated by a set of rules or algorithms, normally implemented on the computer. In the early 1970s, Prof. Ralph L. Knowles at the University of Southern California implemented an external fac- Figure 2 tor, a solar vector data, as the main principle for the design rule set in The Solar Envelope Tetrahedron liner aggregation study 01. project where all adjacent neighbors are capable of solar access.
    [Show full text]
  • Bull. Magn. Reson., 5 (3-4), 90-277 (1983)
    BULLETIN OF MAGNETIC RESONANCE The Quarterly Review Journal of the • International Society of Magnetic Resonance August 1983 Numbers 3/4 The Proceedings of The Eighth Meeting of SMA • INTERNATIONAL SOCIETY OF • MAGNETIC RESONANCE NMR • NQR • EPR applications in Physics • Chemistry • Biology • Medicine August 22-26, 1983 Chicago, U.S.A. IJniveibsity of Illiiiois at CKicago BULLETIN OF MAGNETIC RESONANCE The Quarterly Review Journal of the International Society of Magnetic Resonance Editor: DAVID G. GORENSTEIN Department of Chemistry University of Illinois at Chicago Post Office Box 4348 Chicago, Illinois, U.S.A. Editorial Board: E.R. ANDREW DAVID GRANT University of Florida University of Utah Gainesville, Florida, U.S.A. Salt Lake City, Utah, U.S.A. ROBERT BLINC JOHN MARKLEY E. Kardelj University of Ljubljana Purdue University Ljubljana, Yugoslavia West Lafayette, Indiana, U.S.A. H. CHIHARA MICHAEL PINTAR Osaka University University of Waterloo Toyonaka, Japan Waterloo, Ontario, Canada GARETH R. EATON JAKOB SMIDT University of Denver Technische Hogeschool Delft Denver, Colorado, U.S.A. Delft, The Netherlands DANIEL FIAT BRIAN SYKES University of Illinois at Chicago University of Alberta Chicago, Illinois, U.S.A. Edmonton, Alberta, Canada SHIZUO FUJIWARA University of Tokyo Bunkyo-Ku, Tokyo, Japan The Bulletin of Magnetic Resonance is a quarterly review journal sponsored by the International Society of Magnetic Resonance. Reviews cover all parts of the broad field of magnetic resonance, viz., the theory and practice of nuclear magnetic resonance, electron paramagnetic resonance, and nuclear quadrupole resonance spectroscopy including applications in physics, chemistry, biology, and medicine. The BULLETIN also acts as a house journal for the International Society of Magnetic Resonance.
    [Show full text]