A Note on Lattice Coverings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design of Large Space Structures Derived from Line Geometry Principles
DESIGN OF LARGE SPACE STRUCTURES DERIVED FROM LINE GEOMETRY PRINCIPLES By PATRICK J. MCGINLEY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Patrick J. McGinley I would like to dedicate this work to Dr. Joseph Duffy - mentor, friend, and inspiration. My thanks also go out to my parents, Thomas and Lorraine, for everything they have taught me, and my friends, especially Byron, Connie, and Richard, for all their support. ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Carl D. Crane, III, the members of my advisory committee, Dr. John Schueller and Dr. John Ziegert, as well as Dr. Joseph Rooney, for their help and guidance during my time at UF, and especially their understanding during a difficult last semester. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT...................................................................................................................... xii CHAPTER 1 INTRODUCTION ............................................................................................................1 2 BACKGROUND ..............................................................................................................5 -
An,4B Tnitt{:} Mûleculaã.Orbital .A-Pproact{
T}IE STEREÛC}{E}4ISTRY ÛF CUg- ÛXYSALT MNNERALS AN,4B TNITT{:} MÛLECULAÃ.ORBITAL .A-PPROACT{ Þ\¡ PETER C. EL-RNS A Thesis Subrnitted to the Faculty of Graduate Studies in Pa-rtial Fulfilment, of the Requireraents for the Ðegree of ÐOCT'OR OF THiLOSOPHY Ðepartment of Geological Sciences University of Manitoba Winnipeg, Manitoba @ Copyright by Peter Carman Bu¡¡rs, 1994 WWW National Library B¡bliothèqLre naiioftale W'r @ of Canada du Canâda Acquisitions and Direction des acquisitions et B¡bf iographic Seruices Branch des servìces bibl¡ographiques 395 Wellington Slreet 395, rue WeJlingron Otlawa, Onta¡io Onawa (Oniar¡o) K1A ON4 K1A ON4 aùtLle Na¡e èlùerce T'he at¡th@ü' has graü-lted aãx Ë*'au¡tec¡r a aaaondé s"!ne licemce írrevoeabIe nÕrÌ-ex6t¿.Esive ¡¡eemcc inr¡ávoaab[e et ntm exc[usíve allowing t['re F,Iationat Lihrany of penmrettant à $a Eihliothèque Camada tÕ reprtdL¡ce, åoana, natiomale du Canada de distribute Õr sell copíes of reprods.rãre, prêter, distribuer ou his/hen thesís by any sneams arsd vendre des aopies de sa thèse in any fonm or fonnlat, rnaking de quelque rna¡rière et sous tÍ'lis tl'lesis available to E¡'¡terested qt¡elque forrne que ce soit poun persons. rnettre des exenarplaires de cette thèse à [a disposition des personnes intéressées. T'[re a¡.¡t['ror retains ownershíp of E-'a¡.¡teun conserve la propriété du the eopyrig[et im hrislher tÍresis" droit d'auteun quri protège sa Ê.deít[rer ttre thesís sror substantåa[ t['rèse. hdå 8a thèse ni des extnaits extnacts fnonn it may be pnin-lted or substantiels de celle-ci ne otlrerwíse neproduced wãtå'¡or¡t doívent être ãrrrpria'nés oL¡ [rüs/her pernnlssiom. -
A Retrospective and New Results
Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 73 (2012) 2012, Pages 207–220 S 0077-1554(2013)00208-3 Article electronically published on March 21, 2013 PARALLELOHEDRA: A RETROSPECTIVE AND NEW RESULTS N. P. DOLBILIN Abstract. Parallelohedra are polyhedra that partition Euclidean space with par- allel copies. This class of polyhedra has applications both in mathematics and in the natural sciences. An important subclass of parallelohedra is comprised of the so-called Vorono˘ı parallelohedra, which are Dirichlet–Vorono˘ı domains for integer lattices. More than a century ago Vorono˘ı stated the conjecture that every parallelo- hedron is affinely equivalent to some Vorono˘ı parallelohedron. Although considerable progress has been made, this conjecture has not been proved in full. This paper con- tains a survey of a number of classical theorems in the theory of parallelohedra, together with some new results related to Vorono˘ı’s conjecture. General information about parallelohedra Parallelohedra have applications in mathematics and then natural sciences. Multi- dimensional parallelohedra are applied to the geometry of numbers, combinatorial ge- ometry and coding theory. A three-dimensional parallelohedron gives a model of the fundamental cell of a crystal and plays an important role in geometric crystallography, structural chemistry and solid-state physics. This class of polyhedra is also interest- ing in its own right. On the one hand, it is completely described by simple conditions (the Minkowski–Venkov criterion), and on the other hand, as we shall see, this class is very numerous and many natural questions on combinatorics of parallelohedra remain unsolved. Both the notion and the term parallelohedron were introduced by the prominent crys- tallographer F¨edorov [1] in 1885. -
Habitat Polyedrique
Habitat polyedrique par J. Baracs, TX Luong, B. Lhopold, J. Maurice 1 8 Introduction nouvellement acquis, nous commencerons”inno- Topologle Sttucturale # 2,1979. cemment “a construire des contenants pour un contenu don&. Nous ne serons pas dbcouragbs si le L’espace tridimensionnel est une de nos plus fasci- resultat est le meme vieux cube. Mais cela n’arrivera nantes et precieuses ressources naturelles. Le res- pas souvent. pect egal aux trois dimensions a et6 evident a travers toutes les phases de I’histoire de I’architec- ture. II n’en est pas ainsi de nos jours. La vraie Nous presentons dans cet article deux projets d’etu- qualite tridimensionnelle de I’architecture a disparu. diants. II nous a fallu quelques annees de recher- Elle est remplacee par une approche bidimension- the et de preparation avant d’aborder cette etude. nelle “simpliste” et plate. Les edifices sont dissequ6s Notre approche fut tres differente de la pratique en plans, coupes et facades; chacun de ces ele- architecturale courante. Nous avons cherch6 un ments est trait6 un par un, sans aucun respect de moyen de remplacer I’intuition et I’ambiguite par des leur unite dans I’espace. La monotonie geometrique methodes coherentes et scientifiques. La topologie, de notre environnement est un fait. Nos villes sem- aussi bien que les geometries combinatoires, pro- blent etre des cimetieres dont les tombes, prismes jectives, affines et- metriques, semblent avoir et6 Cet article traite de la synthese des formes rectangulaires, sont eparpillees le long d’une trame inventees a cet effet. Done, lorsque nous avons polyedriques aux fins architecturales. -
A Tourist Guide to the RCSR
A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle. -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
Parallelohedra and the Voronoi Conjecture
Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra and the Voronoi Conjecture Alexey Garber Moscow State University and Delone Laboratory of Yaroslavl State University, Russia FU Berlin November 28, 2013 A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Two types of two-dimensional parallelohedra Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra Denition d Convex d-dimensional polytope P is called a parallelohedron if R can be (face-to-face) tiled into parallel copies of P. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra Denition d Convex d-dimensional polytope P is called a parallelohedron if R can be (face-to-face) tiled into parallel copies of P. Two types of two-dimensional parallelohedra A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra. Parallelepiped and hexagonal prism with centrally symmetric base. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra. -
Four-Dimensional Regular Hexagon by Koji Miyazaki
Four-Dimensional Regular Hexagon by Koji Miyazaki Rbumb Topologie structurale #lo, 1984 Abstract Structural Topology #lo, 1984 L’hexagone rbgulier quadridimensionnel On comprend facilement que les analogues quadridimensionnels du triangle rCgu- It is easily understood that the Cdimensional analogues of the regular triangle, lier, du carrC et du pentagone rtgulier (dans cet article, ils sont tous composks square, and regular pentagon (in this paper, all are composed of only edges and uniquement d’arites et ne comportent aucun ClCment a deux dimensions) sont have no portion of 2-space) are the regular tetrahedron, cube, and regular dode- respectivement le tttrabdre rtgulier, le cube et le dodkcabdre rtgulier (dans cet cahedron (in this paper, all are composed of only faces and have no portion of article, ils sont tous composts uniquement de faces et ne comportent aucun ClCment 3-space) respectively. Then, which polyhedron is the Cdimensional analogue of the a trois dimensions). Alors, quel polybdre est l’analogue quadridimensionnel de regular hexagon, i.e. Cdimensional regular hexagon? If this riddle is solved, we can I’hexagone rtgulier, c’est-a-dire un hexagone rtgulier quadridimensionnel? Si nous see a 4-dimensional snowflake, honeycomb, pencil, etc. rCsolvons cette Cnigme, nous pourrons reprksenter un flocon de neige, un nid d’abeille, un crayon, etc. quadri-dimensionnels. PropribtC ghmbtriques de I’hexagone rhulier. Les principales propriCtb gkomttriques Geometrical Properties of Regular Hexagon. The main geometrical properties of the de l’hexagone rkgulier se rapportant cet article sont les suivantes: regular hexagon which relate to this paper are as follows: I. I1 possMe un cercle inscrit auquel toutes les arites sont adjacentes en leur milieu. -
Outline of Crystal Field Theory Bums, R
6 1 Introduction 1.3 Background reading 2 Bethe, H. (1929) Splitting of terms in crystals. (Termsaufspaltung in Kristallen.) Ann. Phys., 3, 133-206. [Trans[.: Cons]lltants Bureau, New York.] Outline of crystal field theory Bums, R. G., Clark, R. H. & Fyfe, W. S. (1964) Crystal field theory and applications to problems in geochemistry. In Chemistry of the Earth's Crust, Proceedings of the Vemadsky Centennial Symposium. (A. P. Vinogradov, ed.; Science Press, Moscow), 2, 88-106. [Trans/.: Israel Progr. Sci. Transl., Jerusalem, pp. 93-112 (1967).] Bums, R. .~· & Fyfe, W. S. (1967a) Crystal field theory and the geochemistry of transition elements. In Researches in Geochemistry. (P. H. Abelson, ed.; J. Wiley & Son, New York), 2, 259-85. Bums, R. G. (1985) Thermodynamic data from crystal field spectra. In Macroscopic to Microscopic. Atomic Environments to Mineral Thermodynamics. (S. W. Kieffer & A. Navrotsky, eds; Mineral. Soc. Amer. Publ.), Rev. Mineral., 14, 277-316. Orgel, L. E. (1952) The effects of crystal fields on the properties of transition metal Crystal field theory gives a survey of the effects of electric fields of ions. J. Chern. Soc., pp. 4756-61. definite symmetries on an atom in a crystal structure. Williams, R. J.P. (1959) Deposition of trace elements in a basic magma. Nature, 184, - -A direct physical confirmation should be obtainable by 44. analysis of the spectra of crystals. H. A. Bethe, Annalen der Physik, 3, 206 (1929) 2.1 Introduction Crystal field theory describes the origins and consequences of interactions of the surroundings on the orbital energy levels of a transition metal ion. -
Bilinski Dodecahedron, and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra and Otherhedra
The Bilinski dodecahedron, and assorted parallelohedra, zonohedra, monohedra, isozonohedra and otherhedra. Branko Grünbaum Fifty years ago Stanko Bilinski showed that Fedorov's enumeration of convex polyhedra having congruent rhombi as faces is incomplete, although it had been accepted as valid for the previous 75 years. The dodecahedron he discovered will be used here to document errors by several mathematical luminaries. It also prompted an examination of the largely unexplored topic of analogous non-convex polyhedra, which led to unexpected connections and problems. Background. In 1885 Evgraf Stepanovich Fedorov published the results of several years of research under the title "Elements of the Theory of Figures" [9] in which he defined and studied a variety of concepts that are relevant to our story. This book-long work is considered by many to be one of the mile- stones of mathematical crystallography. For a long time this was, essen- tially, inaccessible and unknown to Western researchers except for a sum- mary [10] in German.1 Several mathematically interesting concepts were introduced in [9]. We shall formulate them in terms that are customarily used today, even though Fedorov's original definitions were not exactly the same. First, a parallelohedron is a polyhedron in 3-space that admits a tiling of the space by translated copies of itself. Obvious examples of parallelohedra are the cube and the Archimedean six-sided prism. The analogous 2-dimensional objects are called parallelogons; it is not hard to show that the only polygons that are parallelogons are the centrally symmetric quadrangles and hexagons. It is clear that any prism with a parallelogonal basis is a parallelohedron, but we shall encounter many parallelohedra that are more complicated. -
Braids and Crossed Modules
J. Group Theory 15 (2012), 57–83 Journal of Group Theory DOI 10.1515/JGT.2011.095 ( de Gruyter 2012 Braids and crossed modules J. Huebschmann (Communicated by Jim Howie) Abstract. For n d 4, we describe Artin’s braid group on n strings as a crossed module over itself. In particular, we interpret the braid relations as crossed module structure relations. 1 Introduction The braid group Bn on n strings was introduced by Emil Artin in 1926, cf. [23] and the references there. It has various interpretations, specifically, as the group of geo- metric braids in R3, as the mapping class group of an n-punctured disk, etc. The group B1 is the trivial group and B2 is infinite cyclic. Henceforth we will take n d 3. The group Bn has n À 1 generators s1; ...; snÀ1 subject to the relations sisj ¼ sjsi; ji À jj d 2; ð1:1Þ sjsjþ1sj ¼ sjþ1sjsjþ1; 1 c j c n À 2: ð1:2Þ The main result of the present paper, Theorem 5.2 below, says that, as a crossed module over itself, (i) the Artin braid group Bn has a single generator, which can be taken to be any of the Artin generators s1; ...; snÀ1, and that, furthermore, (ii) the kernel of the surjection from the free Bn-crossed module Cn in any one of the sj’s onto Bn coincides with the second homology group H2ðBnÞ of Bn, well known to be cyclic of order 2 when n d 4 and trivial for n ¼ 2 and n ¼ 3. Thus, the crossed module property corresponds precisely to the relations (1.2), that is, these relations amount to Pei¤er identities (see below). -
Problems with Hints
MATHEMATICS 5 points: Each face of the octahedron ABCDEF in the Figure is an equilateral triangle with side a. Caterpillar named Plato originally sits in the center of the face ABC, and wants to move to the center of face CDF. Plato can only move along the octahedron surface. What is the shortest distance that the Caterpillar has to travel to the destination? Hint: Imagine that you want to fold the octahedron out of paper. In order to do this, you would have to cut out a special shape. Try to construct this shape, and identify on your picture the points between which the Plato has to travel. 10 points: Each face of the elongated octahedron ABCDEF in the Figure is an isosceles triangle with base b and sides a (for instance, AB=AC=a and BC=b). Caterpillar named Plato originally sits at the vertex B and wants to move to the opposite vertex D (BD is the diagonal of the square BCDE). Plato can only move on the octahedron surface. What is the shortest distance that the Caterpillar has to travel to the destination? Hint: Imagine that you want to fold the octahedron out of paper. In order to do this, you would have to cut out a special shape. Try to construct this shape, and identify on your picture the points between which the Plato has to travel. PHYSICS 5 points: Two wooden blocks of the same mass are glued together. The composite block is floating in water. What part of it is submerged into water if the densities of blocks are 500 kg/m3 and 1100 kg/m3, respectively? Hint: Try to equate the Archimedean buoyancy force to the total weight of the composite block.