Habitat Polyedrique

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Polyedrique Habitat polyedrique par J. Baracs, TX Luong, B. Lhopold, J. Maurice 1 8 Introduction nouvellement acquis, nous commencerons”inno- Topologle Sttucturale # 2,1979. cemment “a construire des contenants pour un contenu don&. Nous ne serons pas dbcouragbs si le L’espace tridimensionnel est une de nos plus fasci- resultat est le meme vieux cube. Mais cela n’arrivera nantes et precieuses ressources naturelles. Le res- pas souvent. pect egal aux trois dimensions a et6 evident a travers toutes les phases de I’histoire de I’architec- ture. II n’en est pas ainsi de nos jours. La vraie Nous presentons dans cet article deux projets d’etu- qualite tridimensionnelle de I’architecture a disparu. diants. II nous a fallu quelques annees de recher- Elle est remplacee par une approche bidimension- the et de preparation avant d’aborder cette etude. nelle “simpliste” et plate. Les edifices sont dissequ6s Notre approche fut tres differente de la pratique en plans, coupes et facades; chacun de ces ele- architecturale courante. Nous avons cherch6 un ments est trait6 un par un, sans aucun respect de moyen de remplacer I’intuition et I’ambiguite par des leur unite dans I’espace. La monotonie geometrique methodes coherentes et scientifiques. La topologie, de notre environnement est un fait. Nos villes sem- aussi bien que les geometries combinatoires, pro- blent etre des cimetieres dont les tombes, prismes jectives, affines et- metriques, semblent avoir et6 Cet article traite de la synthese des formes rectangulaires, sont eparpillees le long d’une trame inventees a cet effet. Done, lorsque nous avons polyedriques aux fins architecturales. Nous strictement orthogonale. voulu mettre sur papier ce que nous avions fait, nous donnons, a titre d’introduction, les methodes avons trouve inevitable de lui donner un certain geometriques de base a employer. Ensuite Nous ne disons pas que le prisme rectangulaire est fondement theorique. Les pages qui suivent ne sont nous suivons le developpement de deux pro- mort. Nous proposons seulement d’etendre le voca- pas &rites pour impressionner le Iecteur mais plu- jets d’ebauche intimement lies. bulaire geometrique des architectes. Nos projets tot pour partager le plaisir d’une experience. tendent a demontrer franchement comment une Le projet # 1 est un complexe d’habitat a meilleure comprehension de I’espace tridimension- densite moyenne. Ici les criteres initiaux &ant nel peut nous amener a acquerir une liberte nouvelle le contenu et les fonctions, les formes finales dans la conception. Nous ne proposons pas d’inon- se sont developpees a partir de ces points de der d&s maintenant nos villes de rhombidodecae- depart. dres 8 la place de cubes, ni de nous engager dans une geometric acrobatique pour qu’elle soit diffe- Le projet # 2 est un complexe d’habitat a haute rente. densite. Dans ce cas, I’etude a debut6 avec le mod&e du reseau de circulation horizontal et Nous commencerons notre demarche par les fonc- vertical. La solution finale est une reponse tions. Nous ne serons pas les premiers a agir ainsi morphologique a cet “echafaudage” abstrait. mais nous avons efface de notre esprit I’envahis- 7 Sante bresence du cube; avec cet esprit “vierge” Partie 1. Fondement thborique. quelle courbe close &pare la surface en deux faisons pas de distinction entre les points finis et regions bordees; la surface est appelee “simplement infinis sur une ligne droite. Dans cette geometric, les connexe”. En consequence, le cube est class6 lignes paralleles sont traitees comme des lignes Planche l= Gbombtries. comme un polyedre simple spherique. Cette classifi- concourantes puisque le point a l’infini est comme cation est du domaine de la Topologie. tous les autres points de la ligne droite. Sont des Le but de ce chapitre est de fournir une information “proprietes projectives”, les proprietes qui demeu- suffisante sur la geometric afin d’aider a compren- La description plus particuliere de notre cube est la rent invariables lorsqu’elles sont sujettes a une dre notre methode pour remplir I’espace avec une suivante: six faces (nous oublierons I’adjectif “pla- projection centrale. certaine famille de polyedres. nes”), chacune ayant quatre aretes (nous ne men- tionnerons pas que les a&es sont des lignes droi- Pour nous assurer que la Fig. A2 est une projection Commencons par une definition: un polyedre est un tes), se rencontrent en douze aretes et huit sommets “correcte” d’un polyedre a faces planes, nous ensemble fini de faces polygonales planes se con- et tous ces sommets sont incidents avec trois arQtes. tracons d’abord le tetraedre ABCD. Le diagramme formant a deux conditions: a) chaque ar&e est Cette description n’utilise pas les termes comme obtenu est toujours la perspective “propre” (projec- commune a deux, et seulement deux, faces; b) un angles, longueurs, plans et lignes droites; cepen- tion centrale) d’un tetraedre aux faces planes parce cheminement peut Qtre trace entre deux points dant, elle donne une importante information de que toutes les faces sont des triangles et n’importe quelconques sur deux faces quelconques en traver- base. La structure combinatoire du cube est appro- quels trois points sont coplanaires. Maintenant, nous sant quelques-unes de ces aretes. La condition a) price a la Theorie Combinatoire et particulierement choisissons un point B’ sur I’arQte AB et tronquons le elimine un cube dans le cas ou une ou plusieurs a la Theorie des Graphes. tetraedre dans le triangle B’EF. Un deuxieme plan faces sont enlevees, ou deux cubes ayant une face par le point A’ coupe le tetraedre dans le triangle ou une arete commune. La condition b) elimine A’GH. Les deux plans tronques se rencontrent deux cubes avec u.n sommet commun et deux cubes La Planche 1 montre comment cette structure com- suivant I’arQte JK; le “cube” resultant est indique en disjoints. binatoire peut Btre realisee comme quatre cubes differents, A, B, C, D, qui different selon le nombre lignes grasses. Tous les polygones bordants sont les Les proprietes des polyedres ont et6 etudiees par de points de fuite. En chaque cas, nous presentons projections de faces planes; par exemple, le quadri- les anciens Grecs. D’apres Sir d’Arcy W. Thompson, le cube dans le contexte de la topologie et des latere JKEF fait partie du triangle B’EF. Euclide a complete, en 300 av. J.C., ses fameux geometries projective, affine et metrique (utilisant Continuons de raffiner notre cube. Nous distinguons douze livres appeles Lea Elbments, juste pour servir les procedes de dessin 1,2,3,4.) une ligne particuliere: la ligne a I’infini. Done, nous d’introduction a ses livres XIII a XV traitant des cinq reconnaissons la difference entre les droites con- polyedres convexes reguliers. Done, nous montrons le diagramme de Schlegel, courantes et les droites paralleles. Ceci est le La geometric introduite par Euclide est aujourd’hui une vue perspective, une vue axonometrique et domaine de la geometric affine. Les proprietes appelee geometric metrique. Depuis ce temps, un finalement deux projections orthogonales (plan et affines restent invariables lorsqu’elles sont sujettes a grand nombre de geometries differentes ont et6 elevation). des projections paralleles. Decidons que les droites ED et FC, les droites HG et DC, aussi bien que les etablies, chacune servant a l’etude des proprietes de La Fig. Al est une representation de toutes ces natures particulieres. droites KG et JH, sont paralleles. La facon la plus proprietes par un graphe qui indique clairement facile d’operer est de tracer une projection parallele tous les huit sommets, toutes les douze arQtes et La recherche architecturale et structurale des polye- (une vue axonometrique) d’un parallelepipede et de dres nous amene a la necessite d’utiliser cinq toutes les six faces ( le bord de ce graphe, le cycle le couper par des plans convenablement choisis branches de la geometric: la topologie et les geome- CDEF,,est la sixieme face). Le fait le plus important, a comme dans la Flg. A3. tries corn binatoire, projective, affine et metrique. part ces informations numeriques, est I’adjacence, Nous allons presenter un exemple simple pour ces qui est aussi entierement d&rite dans ce graphe. Si nous voulons realiser notre cube en trois dimen- cinq disciplines. Nous pouvons dessiner ce graphe de facon a ce que sions nous devons aller plus loin. Dans la Fig. A3, il les aretes se rencontrent seulement dans les som- n’y a pas d’information don&e concernant les Le mot cube est reserve a un polyedre construit avec mets. Ceci confirme le fait que le cube est un “simple longueurs et les angles. Dans la phase finale I’outil six faces carrees. Si nous ecartons les conditions de polyedre”, sa surface est “simplement connexe”. est la Geometric Metrique. La Fig. A4 montre deux regularite, on obtient une variete de cubes ayant projections distinctes orthogonales et paralleles d’interessantes proprietes cachees. Dans la Flg. A2, nous illustrons notre cube avec des (geometric descriptive) qui contiennent maintenant faces planes et des aretes a lignes droites. Ici nous toutes les informations sur ce cube particulier. Les La recherche la plus g&&ale du cube commence entrons dans le domaine de la G6ometrie Projective. vraies longueurs et les vrais angles peuvent Qtre par I’etude de la surface sur laquelle il est plonge Nous ne sommes pas encore preoccupes par les construits afin de realiser le polyedre. sans tenir compte meme des faces, arQtes, som- longueurs, les angles ou m&me le parallelisme. Nous mets, plans, lignes droites, incidences, parallelisme, sommes seulement interesses par les incidences La su ite des cinq geometries suggere le chemine- longueurs et angles. Dans le cas du cube, cette des plans et des droites, incluant ceux exterieurs ment propre ii la conception d’une forme spatiale surface est close et bilaterale puisque n’importe aux 8 sommets et 12 aretes de notre cube; nous ne quelconque.
Recommended publications
  • A Retrospective and New Results
    Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 73 (2012) 2012, Pages 207–220 S 0077-1554(2013)00208-3 Article electronically published on March 21, 2013 PARALLELOHEDRA: A RETROSPECTIVE AND NEW RESULTS N. P. DOLBILIN Abstract. Parallelohedra are polyhedra that partition Euclidean space with par- allel copies. This class of polyhedra has applications both in mathematics and in the natural sciences. An important subclass of parallelohedra is comprised of the so-called Vorono˘ı parallelohedra, which are Dirichlet–Vorono˘ı domains for integer lattices. More than a century ago Vorono˘ı stated the conjecture that every parallelo- hedron is affinely equivalent to some Vorono˘ı parallelohedron. Although considerable progress has been made, this conjecture has not been proved in full. This paper con- tains a survey of a number of classical theorems in the theory of parallelohedra, together with some new results related to Vorono˘ı’s conjecture. General information about parallelohedra Parallelohedra have applications in mathematics and then natural sciences. Multi- dimensional parallelohedra are applied to the geometry of numbers, combinatorial ge- ometry and coding theory. A three-dimensional parallelohedron gives a model of the fundamental cell of a crystal and plays an important role in geometric crystallography, structural chemistry and solid-state physics. This class of polyhedra is also interest- ing in its own right. On the one hand, it is completely described by simple conditions (the Minkowski–Venkov criterion), and on the other hand, as we shall see, this class is very numerous and many natural questions on combinatorics of parallelohedra remain unsolved. Both the notion and the term parallelohedron were introduced by the prominent crys- tallographer F¨edorov [1] in 1885.
    [Show full text]
  • A Tourist Guide to the RCSR
    A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle.
    [Show full text]
  • Parallelohedra and the Voronoi Conjecture
    Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra and the Voronoi Conjecture Alexey Garber Moscow State University and Delone Laboratory of Yaroslavl State University, Russia FU Berlin November 28, 2013 A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Two types of two-dimensional parallelohedra Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra Denition d Convex d-dimensional polytope P is called a parallelohedron if R can be (face-to-face) tiled into parallel copies of P. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Parallelohedra Denition d Convex d-dimensional polytope P is called a parallelohedron if R can be (face-to-face) tiled into parallel copies of P. Two types of two-dimensional parallelohedra A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra. Parallelepiped and hexagonal prism with centrally symmetric base. A.Garber MSU and Delone Lab of YSU Parallelohedra and the Voronoi Conjecture Introduction Dual approach Voronoi's method of canonical scaling Gain function More topics Three-dimensional parallelohedra In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra.
    [Show full text]
  • Four-Dimensional Regular Hexagon by Koji Miyazaki
    Four-Dimensional Regular Hexagon by Koji Miyazaki Rbumb Topologie structurale #lo, 1984 Abstract Structural Topology #lo, 1984 L’hexagone rbgulier quadridimensionnel On comprend facilement que les analogues quadridimensionnels du triangle rCgu- It is easily understood that the Cdimensional analogues of the regular triangle, lier, du carrC et du pentagone rtgulier (dans cet article, ils sont tous composks square, and regular pentagon (in this paper, all are composed of only edges and uniquement d’arites et ne comportent aucun ClCment a deux dimensions) sont have no portion of 2-space) are the regular tetrahedron, cube, and regular dode- respectivement le tttrabdre rtgulier, le cube et le dodkcabdre rtgulier (dans cet cahedron (in this paper, all are composed of only faces and have no portion of article, ils sont tous composts uniquement de faces et ne comportent aucun ClCment 3-space) respectively. Then, which polyhedron is the Cdimensional analogue of the a trois dimensions). Alors, quel polybdre est l’analogue quadridimensionnel de regular hexagon, i.e. Cdimensional regular hexagon? If this riddle is solved, we can I’hexagone rtgulier, c’est-a-dire un hexagone rtgulier quadridimensionnel? Si nous see a 4-dimensional snowflake, honeycomb, pencil, etc. rCsolvons cette Cnigme, nous pourrons reprksenter un flocon de neige, un nid d’abeille, un crayon, etc. quadri-dimensionnels. PropribtC ghmbtriques de I’hexagone rhulier. Les principales propriCtb gkomttriques Geometrical Properties of Regular Hexagon. The main geometrical properties of the de l’hexagone rkgulier se rapportant cet article sont les suivantes: regular hexagon which relate to this paper are as follows: I. I1 possMe un cercle inscrit auquel toutes les arites sont adjacentes en leur milieu.
    [Show full text]
  • Bilinski Dodecahedron, and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra and Otherhedra
    The Bilinski dodecahedron, and assorted parallelohedra, zonohedra, monohedra, isozonohedra and otherhedra. Branko Grünbaum Fifty years ago Stanko Bilinski showed that Fedorov's enumeration of convex polyhedra having congruent rhombi as faces is incomplete, although it had been accepted as valid for the previous 75 years. The dodecahedron he discovered will be used here to document errors by several mathematical luminaries. It also prompted an examination of the largely unexplored topic of analogous non-convex polyhedra, which led to unexpected connections and problems. Background. In 1885 Evgraf Stepanovich Fedorov published the results of several years of research under the title "Elements of the Theory of Figures" [9] in which he defined and studied a variety of concepts that are relevant to our story. This book-long work is considered by many to be one of the mile- stones of mathematical crystallography. For a long time this was, essen- tially, inaccessible and unknown to Western researchers except for a sum- mary [10] in German.1 Several mathematically interesting concepts were introduced in [9]. We shall formulate them in terms that are customarily used today, even though Fedorov's original definitions were not exactly the same. First, a parallelohedron is a polyhedron in 3-space that admits a tiling of the space by translated copies of itself. Obvious examples of parallelohedra are the cube and the Archimedean six-sided prism. The analogous 2-dimensional objects are called parallelogons; it is not hard to show that the only polygons that are parallelogons are the centrally symmetric quadrangles and hexagons. It is clear that any prism with a parallelogonal basis is a parallelohedron, but we shall encounter many parallelohedra that are more complicated.
    [Show full text]
  • Braids and Crossed Modules
    J. Group Theory 15 (2012), 57–83 Journal of Group Theory DOI 10.1515/JGT.2011.095 ( de Gruyter 2012 Braids and crossed modules J. Huebschmann (Communicated by Jim Howie) Abstract. For n d 4, we describe Artin’s braid group on n strings as a crossed module over itself. In particular, we interpret the braid relations as crossed module structure relations. 1 Introduction The braid group Bn on n strings was introduced by Emil Artin in 1926, cf. [23] and the references there. It has various interpretations, specifically, as the group of geo- metric braids in R3, as the mapping class group of an n-punctured disk, etc. The group B1 is the trivial group and B2 is infinite cyclic. Henceforth we will take n d 3. The group Bn has n À 1 generators s1; ...; snÀ1 subject to the relations sisj ¼ sjsi; ji À jj d 2; ð1:1Þ sjsjþ1sj ¼ sjþ1sjsjþ1; 1 c j c n À 2: ð1:2Þ The main result of the present paper, Theorem 5.2 below, says that, as a crossed module over itself, (i) the Artin braid group Bn has a single generator, which can be taken to be any of the Artin generators s1; ...; snÀ1, and that, furthermore, (ii) the kernel of the surjection from the free Bn-crossed module Cn in any one of the sj’s onto Bn coincides with the second homology group H2ðBnÞ of Bn, well known to be cyclic of order 2 when n d 4 and trivial for n ¼ 2 and n ¼ 3. Thus, the crossed module property corresponds precisely to the relations (1.2), that is, these relations amount to Pei¤er identities (see below).
    [Show full text]
  • Embedding Parallelohedra Into Primitive Cubic Networks and Structural Automata Description
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Mathematical and Statistical Sciences Faculty Publications and Presentations College of Sciences 8-2020 Embedding parallelohedra into primitive cubic networks and structural automata description Mikhail M. Bouniaev The University of Texas Rio Grande Valley Sergey V. Krivovichev Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac Part of the Mathematics Commons Recommended Citation Bouniaev, M. M., and S. V. Krivovichev. 2020. “Embedding Parallelohedra into Primitive Cubic Networks and Structural Automata Description.” Acta Crystallographica Section A: Foundations and Advances 76 (6): 698–712. https://doi.org/10.1107/S2053273320011663. This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. research papers Embedding parallelohedra into primitive cubic networks and structural automata description ISSN 2053-2733 Mikhail M. Bouniaeva* and Sergey V. Krivovichevb,c aSchool of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, One University Boulevard, Brownsville, TX 78520, USA, bKola Science Centre, Russian Academy of Sciences, Fersmana Str. 14, Apatity 184209, Russian Federation, and cDepartment of Crystallography, St Petersburg State University, University Emb. 7/9, St Petersburg Received 9 March 2020 199034, Russian Federation. *Correspondence e-mail: [email protected] Accepted 25 August 2020 The main goal of the paper is to contribute to the agenda of developing an Edited by U. Grimm, The Open University, UK algorithmic model for crystallization and measuring the complexity of crystals by constructing embeddings of 3D parallelohedra into a primitive cubic network Keywords: parallelohedra; crystalline structures; (pcu net).
    [Show full text]
  • Generalized Crystallography of Diamond-Like Structures: II
    Crystallography Reports, Vol. 47, No. 5, 2002, pp. 709–719. Translated from Kristallografiya, Vol. 47, No. 5, 2002, pp. 775–784. Original Russian Text Copyright © 2002 by Talis. CRYSTAL SYMMETRY Generalized Crystallography of Diamond-Like Structures: II. Diamond Packing in the Space of a Three-Dimensional Sphere, Subconfiguration of Finite Projective Planes, and Generating Clusters of Diamond-Like Structures A. L. Talis Institute of Synthesis of Mineral Raw Materials, Aleksandrov, Vladimir oblast, Russia e-mail: ofi@vniisims.elcom.ru Received April 24, 2001 Abstract—An enantiomorphous 240-vertex “diamond structure” is considered in the space of a three-dimen- sional sphere S3, whose highly symmetric clusters determined by the subconfigurations of finite projective planes PG(2, q), q = 2, 3, 4 are the specific clusters of diamond-like structures. The classification of the gener- ating clusters forming diamond-like structures is introduced. It is shown that the symmetry of the configuration, in which the configuration setting the generating clusters is embedded, determines the symmetry of diamond- like structures. The sequence of diamond-like structures (from a diamond to a BC8 structure) is also considered. On an example of the construction of PG(2, 3), it is shown with the aid of the summation and multiplication tables of the Galois field GF(3) that the generalized crystallography of diamond-like structures provides more possibilities than classical crystallography because of the transition from groups to algebraic constructions in which at least two operations are defined. © 2002 MAIK “Nauka/Interperiodica”. INTRODUCTION the diamond-like structures themselves are constructed from a certain set of generating clusters in a way similar Earlier [1], it was shown that the adequate mapping to the construction of a three-dimensional Penrose divi- of the symmetry of diamond-like structures requires a sion from four types of tetrahedra [7].
    [Show full text]
  • On Parallelohedra of Nil-Space
    ON PARALLELOHEDRA OF NIL-SPACE 1Benedek SCHULTZ, 2Jenő SZIRMAI 1 Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry, e-mail: [email protected] 2 Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry, e-mail: [email protected] Received 20 May 2011; accepted 20 May 2011 Abstract: The parallelohedron is one of basic concepts in the Euclidean geometry and in the 3-dimensional crystallography, has been introduced by the crystallographer E.S. Fedorov (1889). The 3-dimensional parallelohedron can be defined as a convex 3-dimensional polyhedron whose parallel copies tiles the 3-dimensional Euclidean space in a face to face manner. This paral- lelohedron presents a fundamental domain of a discrete translation group. The 3-parallelepiped is the most trivial and obvious example of a 3-parallelohedron. Fedorov was the first to succeed in classifying the parallelohedra of the 3-dimensional Euclidean space, while in some non-Euclidean geometries it is still an open problem. In this paper we consider the Nil geometry introduced by Heisenberg’s real matrix group. We introduce the notion of the Nil -parallelohedra, outline the concept of parallelohedra classes analogous to the Euclidean geometry. We also study and visualize some special classes of Nil - parallelohedra. Keywords: Tiling, discrete translation group, parallelohedron, Nil geometry. 2 B. SCHULTZ and J. SZIRMAI 1. Euclidean case Fedorov was the first to successfully classify the parallelohedra in Euclidean 3-space E3 in [7]. These are convex bodies, which allow the tiling of space using only transla- tions. Fedorov’s solution for Euclidean case relied basically on two theorems.
    [Show full text]
  • A Note on Lattice Coverings
    A Note on Lattice Coverings Fei Xue and Chuanming Zong School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected] Abstract. Whenever n 3, there is a lattice covering C +Λ of En by a centrally symmetric convex≥ body C such that C does not contain any paral- lelohedron P that P + Λ is a tiling of En. 1. Introduction Let K denote an n-dimensional convex body and let C denote a centrally sym- metric one centered at the origin of En. In particular, let P denote an n-dimensional parallelohedron. In other words, there is a suitable lattice Λ such that P + Λ is a tiling of En. In 1885, E.S. Fedorov [3] discovered that, in E2 a parallelohedron is either a parallelogram or a centrally symmetric hexagon (Figure 1); in E3 a parallelohedron can be and only can be a parallelotope, a hexagonal prism, a rhombic dodecahedron, an elongated octahedron, or a truncated octahedron (Figure 2). parallelogram centrally symmetric hexagon Figure 1 arXiv:1402.4965v1 [math.MG] 20 Feb 2014 Let θt(K) denote the density of the thinnest translative covering of En by K and let θl(K) denote the density of the thinnest lattice covering of En by K. For convenience, let Bn denote the n-dimensional unit ball and let T n denote the n-dimensional simplex with unit edges. In 1939, Kerschner [7] proved θt(B2) = θl(B2) = 2π/√27. In 1946 and 1950, L. Fejes Toth [5] and [6] proved that θt(C)= θl(C) 2π/√27 holds for all two-dimensional centrally symmetric convex domains, where≤ equality is attained precisely for the ellipses.
    [Show full text]
  • Mathematical Questions Concerning Zonohwlral Space-Filling by Henry Crapo
    Mathematical Questions concerning Zonohwlral Space-Filling by Henry Crapo Introduction application, have already been pursued during the Structural Topology #2,1979 years since “Polyhedral Habitat” was written, by In his article “Polyhedral Habitat”, Janos Baracs Nabil Macarios, Yves Dumas, Pierre Granche, Vahe introduces a technique for synthesizing zonohedral Emmian, and other members and associates of the space fillings. It is an effective drafting technique, Structural Topology research group. The problems since it enables the user quickly to arrive at a single outlined in the present article are those which arise correct plane projection of a spatial framework, from when one begins to piece together a certain mathe- which the required spatial information may then be matical theory of space-filling, a theory designed to surmised, either by intuition, or by calculation based shed some light on space-filling polyhedra which are upon a very few free choices. The technique pro- formed as concave clusters of zonohedra. Recent ceeds in three stages: work in this direction was carried forward during meetings of the research group, mainly through the A) successive splittings of a plane tessellation, to efforts of Janos Baracs, Walter Whiteley, Marc produce tessellations by concave clusters of convex Pelletier, and the present author. As we outline the zonagons. problems which we see arising, we will point out B) staggerlng (relative parallel transport) of two those areas where we have been able to make some copies of the resulting tessellation, to arrive at a progress, and will give some references to what we projection of a space-filling. Abstract feel is relevant mathematical literature, chiefly to the C) llftlng the projection into space, to arrive at a papers of Coxeter, Grunbaum, Shephard and space-filling by concave clusters of convex zonohe- McMullen.
    [Show full text]
  • The Bilinski Dodecahedron Is a Space-Filling
    The Bilinski dodecahedron is a space-filling (tessellating) polyhedron Xavier Gisz Abstract: These are currently four well known isohedral space-filling convex polyhedra: parellelepiped (the most symmetric form being the cube), rhombic dodecahedron, oblate octahedron (also known as the square bipyramid) and the disphenoid tetrahedron. In this paper it is shown that a Bilinski dodecahedron is an isohedral space-filling tessellating polyhedron, thus bringing the number of these to five. 1 Introduction Shapes that can be stacked together without gaps are deeply satisfying. They are also useful, for example in explaining the arrangement of atoms in crystals. In this paper it is shown that a Bilinski dodecahedron is an isohedral space-filling tessellating polyhedron, thus bringing the number of these to five. 2 Background Shapes with flat surfaces and straight edges are called polyhedra. Polyhedra which don’t have any indents are known as convex polyhedra. Convex polyhedra that stack together in a periodic space filling arrangement are known as ”convex uniform honeycomb” (which are also known as Andreini tessellations). There are currently 28 known convex uniform honeycomb. There are a smaller subset of convex uniform honeycomb which only use a single type of polyhedron. These are called convex space-filling polyhedra. There is an even smaller subset of convex space-filling polyhedra where the polyhedron has faces of the same shape. These are called isohedral space-filling convex polyhedra. These are currently four well known isohedral space-filling
    [Show full text]