Mathematical Questions Concerning Zonohwlral Space-Filling by Henry Crapo

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Questions Concerning Zonohwlral Space-Filling by Henry Crapo Mathematical Questions concerning Zonohwlral Space-Filling by Henry Crapo Introduction application, have already been pursued during the Structural Topology #2,1979 years since “Polyhedral Habitat” was written, by In his article “Polyhedral Habitat”, Janos Baracs Nabil Macarios, Yves Dumas, Pierre Granche, Vahe introduces a technique for synthesizing zonohedral Emmian, and other members and associates of the space fillings. It is an effective drafting technique, Structural Topology research group. The problems since it enables the user quickly to arrive at a single outlined in the present article are those which arise correct plane projection of a spatial framework, from when one begins to piece together a certain mathe- which the required spatial information may then be matical theory of space-filling, a theory designed to surmised, either by intuition, or by calculation based shed some light on space-filling polyhedra which are upon a very few free choices. The technique pro- formed as concave clusters of zonohedra. Recent ceeds in three stages: work in this direction was carried forward during meetings of the research group, mainly through the A) successive splittings of a plane tessellation, to efforts of Janos Baracs, Walter Whiteley, Marc produce tessellations by concave clusters of convex Pelletier, and the present author. As we outline the zonagons. problems which we see arising, we will point out B) staggerlng (relative parallel transport) of two those areas where we have been able to make some copies of the resulting tessellation, to arrive at a progress, and will give some references to what we projection of a space-filling. Abstract feel is relevant mathematical literature, chiefly to the C) llftlng the projection into space, to arrive at a papers of Coxeter, Grunbaum, Shephard and space-filling by concave clusters of convex zonohe- McMullen. An exposition of the basic mathematical pro- dra. perties of zonohedra and their diagrams, ar- Associated with this technique, but not analyzed in ranged so as to bring into focus the many as much detail in the abovementioned article, is the challenging unsolved problems involved in method of Zonohedra implementing the procedures for synthesizing D) beginning with a known space-filling by a convex space-fillings which were described in the parallelohedron, to arrive, by successive spatial A zonohedron is a convex polyhedron expressible as article “Polyhedral Habitat”. splittings, at space-fillings using more general con- the convex sum of a finite set of line segments (see cave parallelohedra. Grunbaum 1967). This construction is as follows. Given n vectors at the origin in three-dimensional Note aux lecteurs francophones: Each of these procedures raises a number of inte- space, vectors not lying in a single plane through the Une traduction franGaise de cet article est resting and challenging problems, with which we origin, their convex sum is the set of points whose disponible sur demande. Un bon de com- hope to tempt some of our mathematically-minded position vectors may be written as linear combina- mande est inclus. readers. Certain lines of inquiry, primarily those tions of the given vectors, using scalars chosen closest to the domain of intended architectural between 0 and 1, inclusive. The boundary of this convex sum is a convex polyhedron, the zonohe- compass construction). This line LO’ gives the true converse is also true: at any vertex of the zonohe- dron, and the original array of vectors we call the length of the line LO, because LK is the hypotenuse dron, find a plane which touches the zonohedron star of that zonohedron. See Flgure 1. of a right triangle with altitude 1, and base LO. By only at that vertex. The plane parallel to this plane, dropping a perpendicular to MN through the point A and passing through the origin, produces the requi- Given a 3-dimensional model of the star, it is easy to until it meets the line O’M, we find the location A’ of red partition of the vectors. generate a set of parallelograms and other 2n-gons, the point A as the face OAB is rotated about the line using in turn all possible pairs of vectors, or other MN until it lies in the plane of projection. Doing the Every edge of the zonohedron, considered as a free larger coplanar sets of vectors, in the star. These same construction at B, we find B’, and completing vector, is equal to one of the vectors in the star. If we zonogons, cut from cardboard, are precisely the the parallelogram, we find a picture of the face OAB fix our attention on all the edges parallel to any one faces needed for a model of the zonohedron.But this with its true edge lengths and angles. vector, we find they form a belt, or zone around the is not the way we would proceed in practice, be- zonohedron. The zonohedron is centrally- symmetric, about a point whose position vector is cause there is really no need to construct a spatial The lengths of vectors in a star can be changed exactly half the sum of all the vectors in the star. This model of the star. Say instead we have a bit more freely without affecting the topology of its zonohe- symmetry is visible in plane projection, by virtue of information in a plane diagram: not only a plane dron, so the lengths can all be set equal to one the fact that the upper cap and lower cap are projection of the star, but also the intersection points without loss of generality. The number of distinct obtained from one another by central reflection of the lines of the star with the plane of projection, as faces needed for the construction of a zonohedron (Figure 4). This will be important when we come to in Figure 2. We may assume that the projection is an can be reduced by assuring that there are relatively study staggerings and lifting, below. We have also orthogonal projection, and that the actual centre of few different angles between pairs of vectors in the used Figure 4 to illustrate how hexagonal faces are the star is at distance 1 above its image in the plane. star. The vectors might be taken as pointing outward formed when we take three vectors coplanar in the Then standard constructions in descriptive geome- toward the vertices of a regular polyhedron, for star, here bdf and ace. try provide correct plane drawings of the real lengths example. and angles of the faces. We see this construction for a typical parallelogram face in Flgure 3. Here the Given a plane through the origin, a plane containing (Coxeter 1962) simplifies the development of zono- lines of the vectors OA and OB meet the plane of none of the vectors of the star, we obtain a partition hedra one step further, by studying the figure projection on points M and N respectively. The point of the vectors into two subsets: those on one side of obtained by intersecting the lines of the vectors in L is the foot of the perpendicular through 0 to the line the plane, those on the other. By adding the vectors the star with a plane not through the origin, such as MN, the line OK is parallel to MN, the segment OK has in these two subsets, we obtain the position vectors in Figure 2, above. He calls this plane figure the length 1, and the line LO’ is equal in length to LK (a of a pair of opposite vertices of the zonohedron. The (primal) projectlve dlagram of the zonohedron. bcdef abcdef bef b d a Figure 2. Intersection of all lines of a spatial star with a plane Figure 1. Each vertex of the zonohedron is reached by adding some (indicated, in a few cases) subset of the set of vectors in its star. produces a (primal) p rejective diagram for its zonohedron. 54 that bipartition of the points. For instance, using not even topologically a zonohedron. By contracting Figure 5, we know that from the vertex df we can any one zone in Flgure 7A, and moving the resulting reach adjacent vertices by adding the vector c, meridian to the perimeter, we obtain a subdivision adding a, or subtracting f. into parallelograms of the zonogon with eight pairs of sides, a subdivision which cannot be the top cap If we contract to zero along itself any one vector of a of a (convex) zonohedron (Flgure 7C). By putting the star, we will contract to zero the width of one zone of word “convex” in parentheses we wish merely to the zonohedron. What remains of the zone will be a underline that strict convexity is part of the definition meridian path, which traverses a sequence of edges of zonohedra. There are, as it is easy to show, many and faces of the contracted zonohedron, using each concave polyhedra having Flgurer 7 as their parallel remaining vector or its negative once (either by projections, concave polyhedra which resemble zo- going along an edge in that direction, or diagonally nohedra in most respects. Figure 3. From a diagram like Figure 2, it is easy to construct the across a face involving that zone), to reach the vertex true dimensions of each face by “rabattement”, rotating the face opposite to the starting point, then continuing on the These facts derive from a dual projective diagram down into the plane of projection, using its intersection with the also invented by Coxeter, and from the theory of plane of projection as hinge for the rotation. opposite route (opposite in the sense of central symmetry) back around to the starting point (Flgure arrangements of lines and pseudo-lines (Grunbaum Planes through the origin, in the above procedure 6).
Recommended publications
  • Snub Cell Tetricosa
    E COLE NORMALE SUPERIEURE ________________________ A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS ________________________ Département de Mathématiques et Informatique CNRS URA 1327 A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS January Lab oratoire dInformatique de lEcole Normale Superieure rue dUlm PARIS Cedex Tel Adresse electronique dmiensfr CEMI Russian Academy of Sciences Moscow A zo o of l embeddable p olytopal graphs MDeza CNRS Ecole Normale Superieure Paris VPGrishukhin CEMI Russian Academy of Sciences Moscow Abstract A simple graph G V E is called l graph if for some n 2 IN there 1 exists a vertexaddressing of each vertex v of G by a vertex av of the n cub e H preserving up to the scale the graph distance ie d v v n G d av av for all v 2 V We distinguish l graphs b etween skeletons H 1 n of a variety of well known classes of p olytop es semiregular regularfaced zonotop es Delaunay p olytop es of dimension and several generalizations of prisms and antiprisms Introduction Some notation and prop erties of p olytopal graphs and hypermetrics Vector representations of l metrics and hypermetrics 1 Regularfaced p olytop es Regular p olytop es Semiregular not regular p olytop es Regularfaced not semiregularp olytop es of dimension Prismatic graphs Moscow and Glob e graphs Stellated k gons Cup olas Antiwebs Capp ed antiprisms towers and fullerenes regularfaced not semiregular p olyhedra Zonotop es Delaunay p olytop es Small
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • A Retrospective and New Results
    Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 73 (2012) 2012, Pages 207–220 S 0077-1554(2013)00208-3 Article electronically published on March 21, 2013 PARALLELOHEDRA: A RETROSPECTIVE AND NEW RESULTS N. P. DOLBILIN Abstract. Parallelohedra are polyhedra that partition Euclidean space with par- allel copies. This class of polyhedra has applications both in mathematics and in the natural sciences. An important subclass of parallelohedra is comprised of the so-called Vorono˘ı parallelohedra, which are Dirichlet–Vorono˘ı domains for integer lattices. More than a century ago Vorono˘ı stated the conjecture that every parallelo- hedron is affinely equivalent to some Vorono˘ı parallelohedron. Although considerable progress has been made, this conjecture has not been proved in full. This paper con- tains a survey of a number of classical theorems in the theory of parallelohedra, together with some new results related to Vorono˘ı’s conjecture. General information about parallelohedra Parallelohedra have applications in mathematics and then natural sciences. Multi- dimensional parallelohedra are applied to the geometry of numbers, combinatorial ge- ometry and coding theory. A three-dimensional parallelohedron gives a model of the fundamental cell of a crystal and plays an important role in geometric crystallography, structural chemistry and solid-state physics. This class of polyhedra is also interest- ing in its own right. On the one hand, it is completely described by simple conditions (the Minkowski–Venkov criterion), and on the other hand, as we shall see, this class is very numerous and many natural questions on combinatorics of parallelohedra remain unsolved. Both the notion and the term parallelohedron were introduced by the prominent crys- tallographer F¨edorov [1] in 1885.
    [Show full text]
  • Habitat Polyedrique
    Habitat polyedrique par J. Baracs, TX Luong, B. Lhopold, J. Maurice 1 8 Introduction nouvellement acquis, nous commencerons”inno- Topologle Sttucturale # 2,1979. cemment “a construire des contenants pour un contenu don&. Nous ne serons pas dbcouragbs si le L’espace tridimensionnel est une de nos plus fasci- resultat est le meme vieux cube. Mais cela n’arrivera nantes et precieuses ressources naturelles. Le res- pas souvent. pect egal aux trois dimensions a et6 evident a travers toutes les phases de I’histoire de I’architec- ture. II n’en est pas ainsi de nos jours. La vraie Nous presentons dans cet article deux projets d’etu- qualite tridimensionnelle de I’architecture a disparu. diants. II nous a fallu quelques annees de recher- Elle est remplacee par une approche bidimension- the et de preparation avant d’aborder cette etude. nelle “simpliste” et plate. Les edifices sont dissequ6s Notre approche fut tres differente de la pratique en plans, coupes et facades; chacun de ces ele- architecturale courante. Nous avons cherch6 un ments est trait6 un par un, sans aucun respect de moyen de remplacer I’intuition et I’ambiguite par des leur unite dans I’espace. La monotonie geometrique methodes coherentes et scientifiques. La topologie, de notre environnement est un fait. Nos villes sem- aussi bien que les geometries combinatoires, pro- blent etre des cimetieres dont les tombes, prismes jectives, affines et- metriques, semblent avoir et6 Cet article traite de la synthese des formes rectangulaires, sont eparpillees le long d’une trame inventees a cet effet. Done, lorsque nous avons polyedriques aux fins architecturales.
    [Show full text]
  • A Tourist Guide to the RCSR
    A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle.
    [Show full text]
  • Four-Dimensional Regular Polytopes
    faculty of science mathematics and applied and engineering mathematics Four-dimensional regular polytopes Bachelor’s Project Mathematics November 2020 Student: S.H.E. Kamps First supervisor: Prof.dr. J. Top Second assessor: P. Kiliçer, PhD Abstract Since Ancient times, Mathematicians have been interested in the study of convex, regular poly- hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids. In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe- matically, adding one regular polytope to the collection with no analogue regular polyhedron. This thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry groups of the polytopes are touched upon. To better understand the notions of regularity and sym- metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex, regular polyhedra in three-dimensional space. Keywords: Regular convex 4-polytopes, Platonic solids, symmetry groups Acknowledgements I would like to thank prof. dr. J. Top for supervising this thesis online and adapting to the cir- cumstances of Covid-19. I also want to thank him for his patience, and all his useful comments in and outside my LATEX-file. Also many thanks to my second supervisor, dr. P. Kılıçer. Furthermore, I would like to thank Jeanne for all her hospitality and kindness to welcome me in her home during the process of writing this thesis.
    [Show full text]
  • 15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
    15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P .
    [Show full text]
  • Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations
    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] April 20, 2017 2 3 Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier Abstract: Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, com- puter vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincar´eformula (Poincar´e,1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a \correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space.
    [Show full text]
  • ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
    ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow­ ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera­ lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) .
    [Show full text]
  • 36 COMPUTATIONAL CONVEXITY Peter Gritzmann and Victor Klee
    36 COMPUTATIONAL CONVEXITY Peter Gritzmann and Victor Klee INTRODUCTION The subject of Computational Convexity draws its methods from discrete mathe- matics and convex geometry, and many of its problems from operations research, computer science, data analysis, physics, material science, and other applied ar- eas. In essence, it is the study of the computational and algorithmic aspects of high-dimensional convex sets (especially polytopes), with a view to applying the knowledge gained to convex bodies that arise in other mathematical disciplines or in the mathematical modeling of problems from outside mathematics. The name Computational Convexity is of more recent origin, having first ap- peared in print in 1989. However, results that retrospectively belong to this area go back a long way. In particular, many of the basic ideas of Linear Programming have an essentially geometric character and fit very well into the conception of Compu- tational Convexity. The same is true of the subject of Polyhedral Combinatorics and of the Algorithmic Theory of Polytopes and Convex Bodies. The emphasis in Computational Convexity is on problems whose underlying structure is the convex geometry of normed vector spaces of finite but generally not restricted dimension, rather than of fixed dimension. This leads to closer con- nections with the optimization problems that arise in a wide variety of disciplines. Further, in the study of Computational Convexity, the underlying model of com- putation is mainly the binary (Turing machine) model that is common in studies of computational complexity. This requirement is imposed by prospective appli- cations, particularly in mathematical programming. For the study of algorithmic aspects of convex bodies that are not polytopes, the binary model is often aug- mented by additional devices called \oracles." Some cases of interest involve other models of computation, but the present discussion focuses on aspects of computa- tional convexity for which binary models seem most natural.
    [Show full text]
  • Combinatorial Aspects of Convex Polytopes Margaret M
    Combinatorial Aspects of Convex Polytopes Margaret M. Bayer1 Department of Mathematics University of Kansas Carl W. Lee2 Department of Mathematics University of Kentucky August 1, 1991 Chapter for Handbook on Convex Geometry P. Gruber and J. Wills, Editors 1Supported in part by NSF grant DMS-8801078. 2Supported in part by NSF grant DMS-8802933, by NSA grant MDA904-89-H-2038, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, NSF-STC88-09648. 1 Definitions and Fundamental Results 3 1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Faces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.3 Polarity and Duality : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2 Shellings 4 2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2 Euler's Relation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Line Shellings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.4 Shellable Simplicial Complexes : : : : : : : : : : : : : : : : : : : 5 2.5 The Dehn-Sommerville Equations : : : : : : : : : : : : : : : : : : 6 2.6 Completely Unimodal Numberings and Orientations : : : : : : : 7 2.7 The Upper Bound Theorem : : : : : : : : : : : : : : : : : : : : : 8 2.8 The Lower Bound Theorem : : : : : : : : : : : : : : : : : : : : : 9 2.9 Constructions Using Shellings : : : : : : : : : : : : :
    [Show full text]
  • The Geometry of Colour
    The Geometry of Colour Paul Centore The Geometry of Colour Paul Centore Suggested Cataloging Data Centore, Paul The Geometry of Colour/P. Centore 221 p., 21.6 by 14.0 cm ISBN 978-0-9990291-0-7 1. Color 2. Color—Mathematics 3. Colorimetry 4. Convex Geometry I. Centore, Paul, 1968- II. Title QC495.C397 2017 535.6 Coopyright c 2017 by Paul Centore • All rights reserved Printed in the United States of America ISBN 978-0-9990291-0-7 ISBN 9780999029107 9 780999 029107 Introduction Colour is a universal experience, which has been investigated since an- tiquity. Today, colour science rests firmly on both empirical findings and theoretical development. Unlike many technical fields, colour sci- ence considers not only physical factors, but also human perception, and the relationships between the two. A basic part of colour science is colour matching, which identifies when two side-by-side lights, viewed in isolation through an aperture, produce the same colour. The Geometry of Colour formulates colour matching mathematically, emphasizing geometric constructions and understanding. The motiva- tion for writing it was the unifying insight that many apparently dis- parate objects in colour science share a common zonohedral structure. The book aims at both rigor and intuition. Fortunately, many colour science objects can be explicitly constructed in a three-dimensional vector space, and, while linear algebra insures rigorous definitions, a premium is placed on a concrete visual and spatial presentation— ideally, a motivated reader could build literal models, for example with foam board and glue. This book is intended for mathematicians, colour scientists, and, as much as possible, curious non-specialists.
    [Show full text]