Cribellate Spiders and the Production of Their Capture Threads

Total Page:16

File Type:pdf, Size:1020Kb

Cribellate Spiders and the Production of Their Capture Threads Cribellate spiders and the production of their capture threads Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Anna-Christin Joel, M.Sc. aus Neuss in Nordrhein-Westfalen, Deutschland Berichter: Universitätsprofessor Dr. tech. Werner Baumgartner Universitätsprofessor Dr. rer. nat. Peter Bräunig Tag der mündlichen Prüfung: 15.07.2016 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Abstract Spider silk production has been studied intensively during the last years due to their mechanical properties. However, spiders do not only produce silk with outstanding mechanical properties: Some of them, the cribellate spiders, are specialized in producing nanofibres as their capture threads. In general, these threads are highly interesting, because their production involves not only a controlled arrangement of three types of silks with one being nanofibres (cribellate fibres), but also a special comb-like structure on the metatarsus of their fourth legs (calamistrum). There are several hypotheses about how this thread assembly takes place, but none of them is able to explain all shapes in which capture threads of different species occur. Hence, the cribellate thread production has to be examined more closely to establish a model describing the process in general. Evaluating the structure of the capture thread, I found the cribellate fibres organized as a mat, forming the typical puffy structure of cribellate threads. Due to this shape, they enclosed two larger parallel fibres (axial fibres). Mat and axial fibres were linked to each other between two puffs presumably by the action of the median spinnerets. This linkage alone cannot lead to the typical puffy shape of a cribellate thread. After removing the calamistrum, a functional capture thread was still produced, but the puffs of the thread were not shaped anymore. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the cribellate fibres. Using data from Uloborus plumipes I was able to develop a model of the cribellate thread production, connecting morphological data with the movement of the single limbs and determining the influence of this action on the structure of the thread. Although I was not able to determine, how cribellate fibres are processed by the calamistrum to form the puffy structure of the capture thread, I was able to refute some hypotheses, for example that Coulomb-forces are involved in keeping the nanofibres separated. The main features of the cribellate thread production were found conserved between species of very distant related families, suggesting the model to be generally valid. Differences in the morphology of the calamistrum were found to be an adaption to the web producing behaviour, not influencing the processing of the cribellate fibres. A teeth-like structure for example might help picking up fibres for transportation of threads after production in non-orb-weaving spiders. Only the asynchronous movement of the posterior spinnerets observed for Kukulcania hibernalis has to have an impact on the thread structuring according to the previously established model. Indeed their threads showed a pronounced looping structure, probably established by fewer linkages between axial fibres and the cribellate mat. Zusammenfassung Die bemerkenswerte mechanische Eigenschaft von Spinnenseide hat dazu geführt, dass die Produktion dieser Seide in den letzten Jahren intensiv erforscht wurde. Betrachtet man allerdings nicht nur die Eigenschaften der Spinnenseide, sondern auch deren Produktion, entdeckt man, dass einige Spinnen, nämlich die cribellaten Spinnen, sogar Nanofasern als Fangfäden herstellen. Für die Herstellung dieser speziellen Fäden werden die Nanofasern (cribellate Fasern) mit zwei weiteren Seidenarten verwoben. Weiterhin ist eine Art Kamm am Metatarsus des vierten Beines, das Calamistrum, an der Produktion beteiligt. Es gibt verschiedene Hypothesen, wie diese Fäden genau hergestellt werden und wie sich die besondere Struktur dieser Fäden ausprägt. Es gibt jedoch bisher keine These, welche alle Strukturunterschiede erklären könnte, die bei den Fäden verschiedener Spinnen vorkommen. Um diese Lücke zu schließen muss die cribellate Fangfadenproduktion näher untersucht und ein Modell erstellt werden, welches den Prozess im Allgemein beschreiben kann. Im Rahmen dieser Arbeit konnte gezeigt werden, dass die cribellaten Fasern sich als umhüllende Matte um zwei größere, parallel zueinander laufende Fäden, den Axialfasern, anordnen. Die Matte und die Axialfasern sind miteinander verbunden, vermutlich durch die Bewegung der medianen Spinnwarzen. Diese Verbindung alleine sorgt allerdings nicht für die typische puffige Struktur der cribellaten Fangfäden. Wenn man das Calamistrum entfernt, wird wider Erwarten ein funktionierender Fangfaden erzeugt, jedoch ohne die charakteristische Struktur. Das Calamistrum ist dementsprechend nicht notwendig, um die cribellaten Fasern zu extrahieren, sondern sorgt durch eine Kräuselung dieser für die puffige Struktur. Mit Hilfe der Spinne Uloborus plumipes konnte ein Model des cribellaten Spinnprozesses erstellt werden, welches morphologische Daten und Bewegungsanalysen vereint und damit erklärt, wie die Struktur des Fadens erzeugt wird. Da die charakteristischen Merkmale des Spinnprozesses von U. plumipes auch in weit entfernt verwandten Spinnen entdeckt wurden, kann davon ausgegangen werden, dass das Model allgemeingültig ist. Einige Unterschiede, wie z.B. die zeitversetze Bewegung der posterioren Spinnwarzen bei Kukulcania hibernalis können mit dem Model zusammen die schleifenförmige Struktur von deren Fangfäden erklären, da hier weniger Verbindungen zwischen cribellater Matte und Axialfasern entstehen. Unterschiede in der Morphologie des Calamistrums hingegen scheinen keinen Einfluss auf die Struktur des Fadens zu haben. Eine Zahn-artige Struktur am Calamistrum zum Beispiel scheint erst nach Fertigstellung des Fadens zu helfen, den Faden zu packen und unabhängig von den Spinnwarzen zum gewünschten Zielort zu transportieren. Table of contents List of abbreviations and nomenclature ..................................................................................... v List of figures ........................................................................................................................... vii List of tables .............................................................................................................................. ix 1. Introduction ............................................................................................................................ 1 1.1. Spiders and their silk ....................................................................................................... 1 1.2. A spider’s web ................................................................................................................. 2 1.3. Capture threads ................................................................................................................ 5 1.4. Cribellate capture threads ................................................................................................ 5 1.5. Differences in the production of the cribellate thread ..................................................... 9 1.6. Aim of this thesis ........................................................................................................... 11 2. Material and Methods ........................................................................................................... 13 2.1. Study animals ................................................................................................................ 13 2.1.1. Keeping and breeding spiders for in vivo experiments .......................................... 13 2.1.2. Preserved specimens .............................................................................................. 14 2.1.3. Thread samples ....................................................................................................... 14 2.2. Behavioural experiments ............................................................................................... 14 2.2.1. Observations in the natural habitat and the lab colony .......................................... 14 2.2.2. Standardized interactions ....................................................................................... 15 2.2.3. Characterization of vibrational patterns ................................................................. 17 2.2.4. Statistical analysis .................................................................................................. 17 2.3. Recording cribellate spinning process ........................................................................... 18 2.3.1. Animal housing for recordings ............................................................................... 18 2.3.2. Nocturnal observations ........................................................................................... 18 2.3.3. Recordings with low speed camera ........................................................................ 19 2.3.4. Recordings with high speed camera ....................................................................... 20 2.3.5. Using freely available clips ...................................................................................
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • Prey of the Jumping Spider Phidippus Johnsoni (Araneae : Salticidae)
    Jackson, R. R . 1977 . Prey of the jumping spider Phidippus johnsoni (Araneae : Salticidae) . J. Arachnol. 5 :145-149 . PREY OF THE JUMPING SPIDER PHIDIPPUS JOHNSONI (ARANEAE : SALTICIDAE) Robert R. Jackson I Zoology Departmen t University of Californi a Berkeley, California 9472 0 ABSTRACT Field data indicate that P. johnsoni is an euryphagous predator, whose diet includes organisms (aphids, ants, opilionids) sometimes considered distasteful to spiders . Other spiders are preyed upon , including conspecifics. Prey size tends to be one quarter to three quarters the size of the predator . INTRODUCTION Since spiders are probably a dominant group of predators of insects (Bristowe, 1941 ; Riechert, 1974; Turnbull, 1973), there is considerable interest in their feeding ecology . Spiders have usually been considered to be euryphagous predators with a stabilizing , rather than regulative, effect on insect populations (Riechert, 1974) . However, informa- tion concerning the prey taken by particular spider species, in the field, is limited . Field studies by Edgar (1969, 1970), Robinson and Robinson (1970) and Turnbull (1960) are especially noteworthy . During the course of a study of the reproductive biology of Phidippus johnsoni (Peckham and Peckham) (Jackson, 1976), occasionally individuals of this species were found in the field holding prey in their chelicerae . Each prey discovered in this way i s listed in Table 1 . In addition, Ken Evans and Charles Griswold, who were familiar wit h this species, recorded observations of P. johnsoni with prey. (Their data are included in Table 1 .) These data came from a variety of habitats in western North America, most o f which have been described elsewhere (Jackson, 1976) .
    [Show full text]
  • North American Spiders of the Genera Cybaeus and Cybaeina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital... BULLETIN OF THE UNIVERSITY OF UTAH Volume 23 December, 1932 No. 2 North American Spiders of the Genera Cybaeus and Cybaeina BY RALPH V. CHAMBERLIN and WILTON IVIE BIOLOGICAL SERIES, Vol. II, No. / - PUBLISHED BY THE UNIVERSITY OF UTAH SALT LAKE CITY THE UNIVERSITY PRESS UNIVERSITY OF UTAH SALT LAKE CITY A Review of the North American Spider of the Genera Cybaeus and Cybaeina By R a l p h V. C h a m b e r l i n a n d W i l t o n I v i e The frequency with which members of the Agelenid genus Cybaeus appeared in collections made by the authors in the mountainous and timbered sections of the Pacific coast region and the representations therein of various apparently undescribed species led to the preparation of this review of the known North American forms. One species hereto­ fore placed in Cybaeus is made the type of a new genus Cybaeina. Most of our species occur in the western states; and it is probable that fur­ ther collecting in this region will bring to light a considerable number of additional forms. The drawings accompanying the paper were made from specimens direct excepting in a few cases where material was not available. In these cases the drawings were copied from the figures published by the authors of the species concerned, as indicated hereafter in each such case, but these drawings were somewhat revised to conform with the general scheme of the other figures in order to facilitate comparison.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Sand Transport and Burrow Construction in Sparassid and Lycosid Spiders
    2017. Journal of Arachnology 45:255–264 Sand transport and burrow construction in sparassid and lycosid spiders Rainer Foelix1, Ingo Rechenberg2, Bruno Erb3, Andrea Alb´ın4 and Anita Aisenberg4: 1Neue Kantonsschule Aarau, Biology Department, Electron Microscopy Unit, Zelgli, CH-5000 Aarau, Switzerland. Email: [email protected]; 2Technische Universita¨t Berlin, Bionik & Evolutionstechnik, Sekr. ACK 1, Ackerstrasse 71-76, D-13355 Berlin, Germany; 3Kilbigstrasse 15, CH-5018 Erlinsbach, Switzerland; 4Laboratorio de Etolog´ıa, Ecolog´ıa y Evolucio´n, Instituto de Investigaciones Biolo´gicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay Abstract. A desert-living spider sparassid (Cebrennus rechenbergi Ja¨ger, 2014) and several lycosid spiders (Evippomma rechenbergi Bayer, Foelix & Alderweireldt 2017, Allocosa senex (Mello-Leita˜o, 1945), Geolycosa missouriensis (Banks, 1895)) were studied with respect to their burrow construction. These spiders face the problem of how to transport dry sand and how to achieve a stable vertical tube. Cebrunnus rechenbergi and A. senex have long bristles on their palps and chelicerae which form a carrying basket (psammophore). Small balls of sand grains are formed at the bottom of a tube and carried to the burrow entrance, where they are dispersed. Psammophores are known in desert ants, but this is the first report in desert spiders. Evippomma rechenbergi has no psammophore but carries sand by using a few sticky threads from the spinnerets; it glues the loose sand grains together, grasps the silk/sand bundle and carries it to the outside. Although C. rechenbergi and E. rechenbergi live in the same environment, they employ different methods to carry sand.
    [Show full text]
  • Springer Natural Sciences & Engineering Preview
    ABC springer.com Springer Natural Sciences & Engineering Preview Top Frontlist January – March 2013 Biomedicine Chemistry Energy Engineering Materials Science Physics FIRST Available from QUARTER 2013 springer.com Order Now! Springer Natural Sciences & Engineering Preview Yes, please send me: Start the New Year with the copies ISBN € copies ISBN € latest titles from Springer copies ISBN € copies ISBN € Dear reader, copies ISBN € This catalog is a special selection of new book publications from Springer in the first quarter copies ISBN € of 2013. It highlights the titles most likely to interest specialists working in the professional field or in academia. copies ISBN € copies ISBN € You will find the international authorship and high quality contributions you have come to expect from the Springer brand in every title. copies ISBN € Please show this catalog to your buyers and acquisition staff. It is a premier and most copies ISBN € authoritative source of new print book titles from Springer. We offer you a wide range of publication types – from contributed volumes focusing on current trends, to handbooks for copies ISBN € in-depth research, to textbooks for graduate students. copies ISBN € If you are looking for something very specific, go to our online catalog at springer.com and search among the 83,000 English books in print by keyword. The Advanced Search makes copies ISBN € it easy to define any scientific subject you have. You can even download a catalog just like this copies ISBN € one with your own personal selection – completely free of charge! copies ISBN € We hope you will enjoy browsing through our new titles and wish you great success throughout the new year! copies ISBN € With best wishes, copies ISBN € Matthew Giannotti Product Manager Trade Marketing Please bill me Please charge my credit card: Eurocard/Access/Mastercard Visa/Barclaycard/Bank/Americard AmericanExpress P.S.
    [Show full text]
  • Cribellum and Calamistrum Ontogeny in the Spider Family Uloboridae: Linking Functionally Related but Sbparate Silk Spinning Features
    2OOl. The Journal of Arachnology 29:22O-226 CRIBELLUM AND CALAMISTRUM ONTOGENY IN THE SPIDER FAMILY ULOBORIDAE: LINKING FUNCTIONALLY RELATED BUT SBPARATE SILK SPINNING FEATURES Brent D. Opelt: Department of BioLogy, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA ABSTRACT. The fourth metatarsusof cribellatespiders bears a setal comb, the calamistrum,that sweeps over the cribellum, drawing fibrils from its spigots and helping to combine these with the capture thread's supporting fibers. In four uloborid species (Hyptiotes cavatus, Miagrammopes animotus, Octonoba sinensis, Uloborus glomosus), calamistrum length and cribellum width have similar developmental trajec- tories, despite being borne on different regions of the body. In contrast, developmental rates of metatarsus IV and its calamistrum differ within species and vary independently among species. Thus, the growth rates of metatarsus IV and the calamistrum are not coupled, freeing calamistrum length to track cribellum width and metatarsus IV length to respond to changes in such features as combing behavior and abdomen dimensions. Keywords: Cribellar thread, Hyptiotes cavatus, Miagrammopes animotus, Octonoba sinensis, Ulobortts glomosus Members of the family Uloboridae produce ond instars (Opell 1979). However, their cri- cribellar prey capture threads formed of a bella and calamistra are not functional until sheath of fine, looped fibrils that surround par- they molt again to become third instars. Sec- acribellar and axial supporting fibers (Eber- ond instar orb-weaving uloborid species pro- hard & Pereira 1993: Opell 1990, 1994, 1995, duce a juvenile web that lacks a sticky spiral 1996, 1999: Peters 1983, 1984, 1986). Cri- and has many closely spaced radii (Lubin bellar fibrils come from the spigots of an oval 1986).
    [Show full text]
  • Taxonomic Notes on Amaurobius (Araneae: Amaurobiidae), Including the Description of a New Species
    Zootaxa 4718 (1): 047–056 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4718.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:5F484F4E-28C2-44E4-B646-58CBF375C4C9 Taxonomic notes on Amaurobius (Araneae: Amaurobiidae), including the description of a new species YURI M. MARUSIK1,2, S. OTTO3 & G. JAPOSHVILI4,5 1Institute for Biological Problems of the North RAS, Portovaya Str. 18, Magadan, Russia. E-mail: [email protected] 2Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa 3GutsMuthsstr. 42, 04177 Leipzig, Germany. 4Institute of Entomology, Agricultural University of Georgia, Agmashenebeli Alley 13 km, 0159 Tbilisi, Georgia 5Invertebrate Research Center, Tetrtsklebi, Telavi municipality 2200, Georgia 6Corresponding author. E-mail: [email protected] Abstract A new species, Amaurobius caucasicus sp. n., is described based on the holotype male and two male paratypes from Eastern Georgia. A similar species, A. hercegovinensis Kulczyński, 1915, known only from the original description is redescribed. The taxonomic status of Amaurobius species considered as nomina dubia and species described outside the Holarctic are also assessed. Amaurobius koponeni Marusik, Ballarin & Omelko, 2012, syn. n. described from northern India is a junior synonym of A. jugorum L. Koch, 1868 and Amaurobius yanoianus Nakatsudi, 1943, syn. n. described from Micronesia is synonymised with the titanoecid species Pandava laminata (Thorell, 1878) a species known from Eastern Africa to Polynesia. Considerable size variation in A. antipovae Marusik et Kovblyuk, 2004 is briefly discussed. Key words: Aranei, Asia, Caucasus, Georgia, Kakheti, misplaced, new synonym, nomen dubium, redescription Introduction Amaurobius C.L.
    [Show full text]
  • Assessing Spider Species Richness and Composition in Mediterranean Cork Oak Forests
    acta oecologica 33 (2008) 114–127 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/actoec Original article Assessing spider species richness and composition in Mediterranean cork oak forests Pedro Cardosoa,b,c,*, Clara Gasparc,d, Luis C. Pereirae, Israel Silvab, Se´rgio S. Henriquese, Ricardo R. da Silvae, Pedro Sousaf aNatural History Museum of Denmark, Zoological Museum and Centre for Macroecology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark bCentre of Environmental Biology, Faculty of Sciences, University of Lisbon, Rua Ernesto de Vasconcelos Ed. C2, Campo Grande, 1749-016 Lisboa, Portugal cAgricultural Sciences Department – CITA-A, University of Azores, Terra-Cha˜, 9701-851 Angra do Heroı´smo, Portugal dBiodiversity and Macroecology Group, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK eDepartment of Biology, University of E´vora, Nu´cleo da Mitra, 7002-554 E´vora, Portugal fCIBIO, Research Centre on Biodiversity and Genetic Resources, University of Oporto, Campus Agra´rio de Vaira˜o, 4485-661 Vaira˜o, Portugal article info abstract Article history: Semi-quantitative sampling protocols have been proposed as the most cost-effective and Received 8 January 2007 comprehensive way of sampling spiders in many regions of the world. In the present study, Accepted 3 October 2007 a balanced sampling design with the same number of samples per day, time of day, collec- Published online 19 November 2007 tor and method, was used to assess the species richness and composition of a Quercus suber woodland in Central Portugal. A total of 475 samples, each corresponding to one hour of Keywords: effective fieldwork, were taken.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]