Modifikation Des Nortropanalkaloid-Stoffwechsels in Solanum Tuberosum L. Durch Knockdown Und Überexpression Von Biosynthesegenen

Total Page:16

File Type:pdf, Size:1020Kb

Modifikation Des Nortropanalkaloid-Stoffwechsels in Solanum Tuberosum L. Durch Knockdown Und Überexpression Von Biosynthesegenen Modifikation des Nortropanalkaloid-Stoffwechsels in Solanum tuberosum L. durch Knockdown und Überexpression von Biosynthesegenen Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther Universität Halle-Wittenberg vorgelegt von Frau Diplom-Pharmazeutin Nadine Küster geboren am 19.10.1985 in Halle (Saale) Gutachter/in 1. Prof. Dr. Birgit Dräger 2. Prof. Dr. Dierk Scheel 3. Prof. Dr. Uwe Sonnewald Halle (Saale), 26.07.2016 Inhaltsverzeichnis INHALTSVERZEICHNIS ABKÜRZUNGSVERZEICHNIS .................................................................................. VI ABBILDUNGSVERZEICHNIS ................................................................................... IX TABELLENVERZEICHNIS ....................................................................................... XII A 1. EINLEITUNG ..................................................................................................... 1 A 1.1. Solanum tuberosum L. – wirtschaftliche Bedeutung, Genom und Sekundärmetaboliten ................................................................................. 1 A 1.2. Tropanalkaloid- und Calysteginbiosynthese ........................................... 3 A 1.2.1 Allgemeine Übersicht ............................................................................ 3 A 1.2.2 Wichtige Enzyme der Tropanalkaloid- und Calysteginbiosynthese ....... 8 A 1.2.3 Regulation der Tropanalkaloid- und Calysteginbiosynthese ................. 9 A 1.2.4 Modifikation der Tropanalkaloid- und Calysteginbiosynthese ............. 11 A 1.3. Spezifische Eigenschaften der Tropinonreduktasen ........................... 13 A 1.4. Calystegine ............................................................................................... 17 A 1.4.1 Struktur und Vorkommen .................................................................... 17 A 1.4.2 Eigenschaften und mögliche natürliche Funktion ................................ 18 A 1.5. Ziele der Arbeit ......................................................................................... 20 B 2 MATERIAL UND METHODEN ........................................................................ 23 B 2.1 Material ...................................................................................................... 23 B 2.1.1 Solanum tuberosum L. ........................................................................ 23 B 2.1.2 Phytophthora infestans ........................................................................ 23 B 2.1.3 Eschericha coli .................................................................................... 23 B 2.1.4 Agrobacterium tumefaciens ................................................................. 23 B 2.1.5 Chemikalien, Oligonukleotide, Enzyme und Kits ................................. 24 B 2.1.6 Medien, Puffer und Lösungen ............................................................. 24 B 2.1.7 Datenbanken und Internetprogramme ................................................ 27 B 2.2 Kultivierung, Transformation und Selektion der Organismen ............. 27 B 2.2.1 Kultivierung von P. infestans ............................................................... 27 B 2.2.2 Kultivierung von S. tuberosum ............................................................ 27 B 2.2.3 A. tumefaciens-vermittelte, stabile Transformation von S. tuberosum 28 B 2.2.4 Herstellung und Transformation chemisch kompetenter E. coli-Zellen 29 B 2.2.5 Herstellung und Transformation chemisch kompetenter A. tumefaciens- Zellen .................................................................................................. 29 B 2.3 Phänotypische Untersuchungen der transgenen Pflanzen ................. 30 I Inhaltsverzeichnis B 2.3.1 Pflanzenwachstum ............................................................................... 30 B 2.3.2 Kartoffelknollen .................................................................................... 30 B 2.3.3 Kartoffelkeime ...................................................................................... 30 B 2.4 Molekularbiologische Methoden ............................................................. 31 B 2.4.1 RNA-Isolation (Trizol-Methode) ........................................................... 31 B 2.4.2 DNase Verdau ..................................................................................... 31 B 2.4.3 cDNA Synthese ................................................................................... 32 B 2.4.4 DNA-Isolation (für Southern-Blot) ........................................................ 32 B 2.4.5 Plasmidpräparation aus E. coli Bakterien ............................................ 32 B 2.4.6 Plasmidpräparation aus A. tumefaciens Bakterien .............................. 33 B 2.4.7 Extraktion von DNA-Fragmenten aus Agarosegelen ........................... 33 B 2.4.8 Klonierungen ........................................................................................ 33 B 2.4.9 Restriktionsverdau von Vektoren ......................................................... 34 B 2.4.10 Auftrennung von DNA-Fragmenten durch Elektrophorese .................. 34 B 2.4.11 PCR mit Plasmid-DNA, cDNA .............................................................. 34 B 2.4.12 Kolonie-PCR für E. coli ........................................................................ 34 B 2.4.13 Kolonie-PCR für A. tumefaciens .......................................................... 35 B 2.4.14 Quantitative Reverse Transkriptase-PCR (qRT-PCR) zur Transkriptmengenquantifizierung ........................................................ 35 B 2.4.15 Southern-Blot ....................................................................................... 36 B 2.4.16 Northern-Blot ....................................................................................... 36 B 2.4.17 Southern- und Northern-Hybridisierungen ........................................... 37 B 2.5 Bioassays .................................................................................................. 38 B 2.5.1 Infektion von Kartoffelblättern mit P. infestans und Biomassebestimmung durch q-PCR ................................................... 38 B 2.5.2 Sporenkeimungsassay mit P. infestans und Calysteginen sowie Keimextrakten von StTRII RNAi Pflanzen ........................................... 38 B 2.6 Isolation und Analytik pflanzlicher Sekundärstoffe .............................. 39 B 2.6.1 Fütterungsversuche mit Tropinon ........................................................ 39 B 2.6.2 Extraktion von Tropinon, Tropin und Pseudotropin ............................. 39 B 2.6.3 GC-MS Analyse von Tropinon, Tropin, Pseudotropin .......................... 39 B 2.6.4 Extraktion von Polyaminen .................................................................. 40 B 2.6.5 Dansylierung von Polyaminen ............................................................. 41 B 2.6.6 HPLC-Analyse von Polyaminen ........................................................... 41 B 2.6.7 Extraktion von Calysteginen ................................................................ 42 B 2.6.8 Silylierung von Calysteginen ................................................................ 43 B 2.6.9 GC-MS Analyse von Calysteginen ...................................................... 43 II Inhaltsverzeichnis B 2.6.10 Extraktion von Jasmonaten ................................................................. 44 B 2.6.11 UPLC-MS/MS Analyse von Jasmonaten ............................................. 44 B 2.6.12 Herstellung des Cucurbinsäure-Standards ......................................... 45 C 3 ERGEBNISSE .................................................................................................. 46 C 3.1 Expression der DsPMT in S. tuberosum ................................................ 46 C 3.1.1 Insertionsereignisse und Transkriptabundanz in DsPMT exprimierenden Linien ......................................................................... 46 C 3.1.2 Polyamin-Gehalt der DsPMT exprimierenden Linien .......................... 47 C 3.1.3 Intermediate der Calysteginbiosynthese und Calystegine .................. 50 C 3.1.4 Wachstum von P. infestans auf den DsPMT exprimierenden Linien .. 52 C 3.2 Modulierung der StTRI-Expression in S. tuberosum ............................ 53 C 3.2.1 Herstellung und Charakterisierung der StTRI RNAi Linien und StTRI Überexpressionslinien ......................................................................... 53 C 3.2.2 Tropinon-Fütterung an StTRI RNAi- und StTRI ÜE Linien .................. 55 C 3.2.3 Calystegin-Gehalt der StTRI ÜE Linien ............................................... 58 C 3.2.4 StTRII-Transkriptabundanz der StTRI RNAi Linien ............................. 59 C 3.2.5 Calystegin-Gehalt der StTRI RNAi Linien ........................................... 60 C 3.2.6 StPin2-Transkriptabundanz in StTRI RNAi Linien nach Verwundung . 60 C 3.2.7 Quantifizierung von Jasmonaten in StTRI RNAi- und StTRI ÜE Linien ............................................................................................................ 62 C 3.2.8 Methyljasmonat-Fütterung an StTRI ÜE Linien ................................... 65 C 3.3 Reduktion der StTRII-Expression in S. tuberosum ............................... 66 C 3.3.1 Herstellung und Charakterisierung der StTRII RNAi Linien ................ 66 C 3.3.2 StTRI-Transkriptabundanz der StTRII RNAi Linien ............................
Recommended publications
  • Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
    G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic)
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic) Plant Chemical Count Activity Count Garcinia xanthochymus 1 1 Nicotiana rustica 1 1 Acacia modesta 1 1 Galanthus nivalis 1 1 Dryopteris marginalis 2 1 Premna integrifolia 1 1 Senecio alpinus 1 1 Cephalotaxus harringtonii 1 1 Comptonia peregrina 1 1 Diospyros rotundifolia 1 1 Alnus crispa 1 1 Haplophyton cimicidum 1 1 Diospyros undulata 1 1 Roylea elegans 1 1 Bruguiera gymnorrhiza 1 1 Gmelina arborea 1 1 Orthosphenia mexicana 1 1 Lumnitzera racemosa 1 1 Melilotus alba 2 1 Duboisia leichhardtii 1 1 Erythroxylum zambesiacum 1 1 Salvia beckeri 1 1 Cephalotaxus spp 1 1 Taxus cuspidata 3 1 Suaeda maritima 1 1 Rhizophora mucronata 1 1 Streblus asper 1 1 Plant Chemical Count Activity Count Dianthus sp. 1 1 Glechoma hirsuta 1 1 Phyllanthus flexuosus 1 1 Euphorbia broteri 1 1 Hyssopus ferganensis 1 1 Lemaireocereus thurberi 1 1 Holacantha emoryi 1 1 Casearia arborea 1 1 Fagonia cretica 1 1 Cephalotaxus wilsoniana 1 1 Hydnocarpus anthelminticus 2 1 Taxus sp 2 1 Zataria multiflora 1 1 Acinos thymoides 1 1 Ambrosia artemisiifolia 1 1 Rhododendron schotense 1 1 Sweetia panamensis 1 1 Thymelaea hirsuta 1 1 Argyreia nervosa 1 1 Carapa guianensis 1 1 Parthenium hysterophorus 1 1 Rhododendron anthopogon 1 1 Strobilanthes cusia 1 1 Dianthus superbus 1 1 Pyropolyporus fomentarius 1 1 Euphorbia hermentiana 1 1 Porteresia coarctata 1 1 2 Plant Chemical Count Activity Count Aerva lanata 1 1 Rivea corymbosa 1 1 Solanum mammosum 1 1 Juniperus horizontalis 1 1 Maytenus
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • SOLANACEAE 茄科 Qie Ke Zhang Zhi-Yun, Lu An-Ming; William G
    Flora of China 17: 300–332. 1994. SOLANACEAE 茄科 qie ke Zhang Zhi-yun, Lu An-ming; William G. D'Arcy Herbs, shrubs, small trees, or climbers. Stems sometimes prickly, rarely thorny; hairs simple, branched, or stellate, sometimes glandular. Leaves alternate, solitary or paired, simple or pinnately compound, without stipules; leaf blade entire, dentate, lobed, or divided. Inflorescences terminal, overtopped by continuing axes, appearing axillary, extra-axillary, or leaf opposed, often apparently umbellate, racemose, paniculate, clustered, or solitary flowers, rarely true cymes, sometimes bracteate. Flowers mostly bisexual, usually regular, 5-merous, rarely 4- or 6–9-merous. Calyx mostly lobed. Petals united. Stamens as many as corolla lobes and alternate with them, inserted within corolla, all alike or 1 or more reduced; anthers dehiscing longitudinally or by apical pores. Ovary 2–5-locular; placentation mostly axile; ovules usually numerous. Style 1. Fruiting calyx often becoming enlarged, mostly persistent. Fruit a berry or capsule. Seeds with copious endosperm; embryo mostly curved. About 95 genera with 2300 species: best represented in western tropical America, widespread in temperate and tropical regions; 20 genera (ten introduced) and 101 species in China. Some species of Solanaceae are known in China only by plants cultivated in ornamental or specialty gardens: Atropa belladonna Linnaeus, Cyphomandra betacea (Cavanilles) Sendtner, Brugmansia suaveolens (Willdenow) Berchtold & Presl, Nicotiana alata Link & Otto, and Solanum jasminoides Paxton. Kuang Ko-zen & Lu An-ming, eds. 1978. Solanaceae. Fl. Reipubl. Popularis Sin. 67(1): 1–175. 1a. Flowers in several- to many-flowered inflorescences; peduncle mostly present and evident. 2a. Fruit enclosed in fruiting calyx.
    [Show full text]
  • Spectrum-Effect Relationships Between High
    Jiang et al Tropical Journal of Pharmaceutical Research February 2017; 16 (2): 379-386 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v16i2.17 Original Research Article Spectrum-effect relationships between high performance liquid chromatography fingerprint and analgesic property of Anisodus tanguticus (Maxim) Pascher (Solanaceae) roots Yun-Bin Jiang1, Mei Zhong2, Ming-Xun Hu1, Ling Chen1, Yan Gou3, Juan Zhou3, Pi-E Wu3 and Yu-Ying Ma1* 1College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, 2Analytical Chemistry Department, West China Frontier Pharmatech Co., Ltd/National Chengdu Center for Safety Evaluation of Drugs, Chengdu 610041, 3Laboratory for Traditional Chinese Medicine and Ethnic Medicine, Sichuan Institute for Food and Drug Control, Chengdu 610079, PR China *For correspondence: Email: [email protected] Received: 10 September 2016 Revised accepted: 11 January 2017 Abstract Purpose: To investigate the spectrum-effect relationships between high performance liquid chromatography with photodiode array detection (HPLC-DAD) fingerprint and analgesic activity of Anisodus tanguticus (Maxim.) Pascher (Solanaceae) (AT) roots. Methods: Analgesic activity of AT roots was evaluated by acetic acid-induced writhing test in mice. Fingerprint of AT roots was established by HPLC-DAD. After oral administration of AT roots extract, intra-gastric contents of caffeoylputrescine, anisodine, fabiatrin, scopolin, scopolamine, anisodamine and atropine in mice were determined by HPLC-DAD. Spectrum-effect relationships between HPLC- DAD fingerprint and analgesic activity were investigated using bivariate correlation analysis. Results: Following treatment with different batches of AT roots extract, acetic acid-induced writhing responses in mice were inhibited significantly (p < 0.05 or 0.01), with inhibitions of 26.62 - 55.13 %, relative to the control group.
    [Show full text]
  • Natural Medicines Used in the Traditional Chinese Medical System for Therapy of Diabetes Mellitus W.L
    Journal of Ethnopharmacology 92 (2004) 1–21 Review Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus W.L. Li a,b, H.C. Zheng c, J. Bukuru b, N. De Kimpe b,∗ a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China b Department of Organic Chemistry, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium c College of Pharmacy, The Second Military Medical University, Shanghai 200433, China Received 5 March 2003; received in revised form 5 October 2003; accepted 23 December 2003 Abstract The rapidly increasing diabetes mellitus is becoming a serious threat to mankind health in all parts of the world. The control and treatment of diabetes and its complications mainly depend on the chemical or biochemical agents, but the fact is that it has never been reported that someone had recovered totally from diabetes. With the distinctive traditional medical opinions and natural medicines mainly originated in herbs, the traditional Chinese medicine performed a good clinical practice and is showing a bright future in the therapy of diabetes mellitus and its complications. Based on a large number of chemical and pharmacological research work, numerous bioactive compounds have been found in Chinese medicinal plants for diabetes. The present paper reviews 86 natural medicines with regards to their origin, anti-diabetic active principles and/or pharmacological test results, which are commonly used in the traditional Chinese medical system and have demonstrated experimental or/and clinical anti-diabetic effectiveness. Among these natural medicines, 82 originate from plants and 4 from animals or insects, which covers 45 families.
    [Show full text]
  • Protective Role of Herbal Drugs in Diabetic Neuropathy: an Updated Review
    https://doi.org/10.15415/jptrm.2018.61003 Protective Role of Herbal Drugs in Diabetic Neuropathy: An Updated Review 1 1* 2 ESHITA SHARMA , TAPAN BEHL , MONIKA SACHDEVA , RASHITA MAKKAR1 AND SANDEEP ARORA1 1Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401 2Senior Lecturer, Fatima College of Health Sciences, AL Ain, United Arab Emirates *Email: [email protected] Received: December 20, 2017 | Revised: February 18, 2018 | Accepted: March 11, 2018 Published online: May 02, 2018 The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications Abstract: Medicinal plants play a beneficial role in health care and are commonly used in preventing and testing diseases and specific ailments. The advantage associated with herbals plants are numerous and cannot be ignored as they have less adherence issues and are accepted widely by the population due to greater belief in Ayurveda since ancient times. Neuropathic pain has immersed as a serious threat to patient that occurs by damaging the blood vessels leading to morbidity and mortality. The present review paper aims in providing an account of various herbal plants that could be employed in treatment of neuropathic pain. Keywords: Diabetic neuropathy, Pyncnogenol, Salvia miltiorrhiza, Anisodus tanguticus, Glycine max, Ginkgo biloba 1. INTRODUCTION Diabetes is a fatal disorder of protein, fat and carbohydrate metabolism that is characterised by increase in fasting and post prandial blood sugar level. On a global level there has been an estimate of increase in diabetes from 4% to 5.5% by the year 2025 (Cogan et al., 1961).Various studies conducted across India in the last few decades highlighted that it is not only prevailing but also increasing on a rapid rate in the urban population.
    [Show full text]
  • An in Vitro Study on Interaction of Anisodine and Monocrotaline With
    Chinese Journal of Natural Chinese Journal of Natural Medicines 2019, 17(7): 04900497 Medicines An in vitro study on interaction of anisodine and monocrotaline with organic cation transporters of the SLC22 and SLC47 families CHEN Jia-Yin1, Jürgen Brockmöller2, Mladen V. Tzvetkov2, WANG Li-Jun1, CHEN Xi-Jing3* 1 Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China; 2 Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen 37075, Germany; 3 Clinical Pharmacokinetics Lab, China Pharmaceutical University, Nanjing 211198, China; Available online 20 July, 2019 [ABSTRACT] Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells. Both anisodine and monocro- −1 taline inhibited the OCTs and MATE transporters. The lowest IC50 was 12.9 µmol·L of anisodine on OCT1 and the highest was 1.8 −1 −1 mmol·L of monocrotaline on OCT2. Anisodine was a substrate of OCT2 (Km = 13.3 ± 2.6 µmol·L and Vmax = 286.8 ± 53.6 pmol/mg −1 protein/min). Monocrotaline was determined to be a substrate of both OCT1 (Km = 109.1 ± 17.8 µmol·L , Vmax = 576.5 ± 87.5 −1 pmol/mg protein/min) and OCT2 (Km = 64.7 ± 14.8 µmol·L , Vmax = 180.7 ± 22.0 pmol/mg protein/min), other than OCT3 and MATE transporters. The results indicated that OCT2 may be important for renal elimination of anisodine and OCT1 was responsible for monocrotaline uptake into liver. However neither MATE1 nor MATE2-K could facilitate transcellular transport of anisodine and monocrotaline.
    [Show full text]
  • Amide Alkaloids from Scopolia Tangutica
    1124 Original Papers Amide Alkaloids from Scopolia tangutica Authors Zhen Long 1*, Yan Zhang2*, Zhimou Guo 1, Lien Wang 2, Xingya Xue1, Xiuli Zhang1, Shisheng Wang3, Zhiwei Wang2, Olivier Civelli2, Xinmiao Liang 1 Affiliations 1 Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China 2 Department of Pharmacology, University of California, Irvine, California, United States 3 School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Peopleʼs Republic of China Key words Abstract gesia in mice. The analgesic effect was recorded l" Scopolia tangutica ! using the tail-flick assay and was reversed by na- l" Solanaceae Four new hydroxycinnamic acid amides, scotan- loxone. l" alkaloid amines A–D(1–4), and seven known alkaloids, in- l" hydroxycinnamic acid amide cluding N1,N10-di-dihydrocaffeoylspermidine (5), l" µ‑opioid receptor scopolamine (6), anisodamine (7), hyoscyamine Abbreviations (8), anisodine (9), caffeoylputrescine (10), and ! N1-caffeoyl-N3-dihydrocaffeoylspermidine (11), FLIPR: fluorometric imaging plate reader were obtained from the roots of Scopolia tanguti- assay ca. The present study represents the first recogni- HCA: hydroxycinnamic acid tion of hydroxycinnamic acid amides containing IR: infrared putrescine or spermidine in S. tangutica.Com- SCX: strong cation exchange pound 1, in particular, contains a moiety resulting SPE: solid-phase extraction from the condensation of nortropinone and pu- TCM: traditional Chinese medicine received February 22, 2014 revised July 3, 2014 trescine. Compound 2 exhibited moderate agonist accepted July 9, 2014 activity at the µ-opioid receptor (EC50 = 7.3 µM).
    [Show full text]
  • Recent Advances in Traditional Plant Drugs and Orchids
    Kong JM et al / Acta Pharmacol Sin 2003 Jan; 24 (1): 7-21 · 7 · Ó 2003, Acta Pharmacologica Sinica Chinese Pharmacological Society Shanghai Institute of Materia Medica Chinese Academy of Sciences http://www.ChinaPhar.com Recent advances in traditional plant drugs and orchids KONG Jin-Ming, GOH Ngoh-Khang, CHIA Lian-Sai1, CHIA Tet-Fatt National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore KEY WORDS Chinese herbal medicine; medicinal plants; Orchidaceae ABSTRACT The main objective of this paper is to review recent advances in plant drug research and developments in orchid study, in an attempt to provide useful references for plant drug studies. Plants have been used as medicine for millennia. Out of estimated 250 000 to 350 000 plant species identified so far, about 35 000 are used worldwide for medicinal purposes. It has been confirmed by WHO that herbal medicines serve the health needs of about 80 percent of the world’s population; especially for millions of people in the vast rural areas of developing countries. Meanwhile, consumers in developed countries are becoming disillusioned with modern healthcare and are seeking alternatives. The recent resurgence of plant remedies results from several factors: 1) the effectiveness of plant medicines; 2) the side effect of most modern drugs; and 3) the development of science and technology. It has been estimated that in the mid-1990s over 200 companies and research organizations worldwide are screening plant and animal compounds for medicinal properties. Actually, several important drugs used in modern medicine have come from medicinal plant studies, eg, taxol/paclitaxel, vinblastine, vincristine, topotecan, irinotecan, etoposide, teniposide, etc.
    [Show full text]
  • Micropropagation of Anisodus Tanguticus and Assessment of Genetic Stability of Regenerated Plants Using Inter Simple Sequence Repeat (ISSR) Marker
    Journal of Medicinal Plants Research Vol. 5(25), pp. 5993-5998, 9 November, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals DOI: 10.5897/JMPR11.352 Full Length Research Paper Micropropagation of Anisodus tanguticus and assessment of genetic stability of regenerated plants using inter simple sequence repeat (ISSR) marker Tao He1,2*, Haitao Wang1, Lina Yang1 and Zhigang Zhao2 1Department of Biosciences, Qinghai University, Xining, Qinghai 810016, P. R., China. 2State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai 810016, P. R., China. Accepted 7 October, 2011 For the first time, an in vitro protocol for efficient shoot multiplication has been developed from shoot tip explants of Anisodus tanguticus, an endangered medicinal plant in the Qinghai-Tibet Plateau. Multiple shoots were induced from the shoot tip explants on Murashige and Skoog (MS) medium supplemented with various concentrations of N6-benzylaminopurine (BA), kinetin (KT) or in combination with α-naphthalene acetic acid (NAA). The presence of BA was more effective than KT on shoot multiplication. A maximum of 3.2 shoots were obtained per explant on MS medium supplemented with 2 mg L-1 BA. Addition of 0.5 or 1 mg L-1 NAA to the BA-containing medium promoted callus formation and reduced shoot multiplication. Shoots treated with 0.5 mg L-1 indole-3-acetic acid (IAA) showed the highest average root number (4.08) and the highest percentage of rooting (75.2%). Micropropagated plantlets were hardened in the greenhouse and successfully established in the soil.
    [Show full text]
  • 3. ANISODUS Link in Sprengel, Syst. Veg. 1: 699. 1825. 山莨菪属 Shan Lang Dang Shu Whitleya Sweet
    Flora of China 17: 304–305. 1994. 3. ANISODUS Link in Sprengel, Syst. Veg. 1: 699. 1825. 山莨菪属 shan lang dang shu Whitleya Sweet. Subshrubs or perennial herbs, glabrous or pubescent with simple and dendritic hairs. Roots stout, fleshy. Stems erect, obtusely angular, di- or trichotomously branched. Leaves solitary or paired, petiolate, simple, entire or coarsely dentate. Inflorescences solitary flowers in leaf axils. Flowers mostly nodding, somewhat actinomorphic or calyx 2-lipped. Calyx mostly funnelform, evidently 10-veined, 4- or 5-lobed; lobes unequal, variable in shape and length. Corolla campanulate, lobes quincuncial, included or exserted from calyx. Stamens shorter than corolla, inserted near base of corolla tube; filaments usually glabrous at base; anthers dehiscing longitudinally. Ovary conical, 2-locular, with a disclike nectary. Fruiting pedicel thickened or elongated. Fruiting calyx becoming enlarged, turbinate or campanulate, sometimes elongated beyond fruit, with main veins prominent and pleated. Fruit a globose or ovoid capsule, circumscissile above middle or dehiscent at apex. Seeds numerous, compressed. Four species: China, Bhutan, India (Sikkim), Nepal; all four in China. 1a. Calyx pubescent, with wavy veins; plant pubescent overall, especially on abaxial surface of leaf blade .................... 1. A. luridus 1b. Calyx glabrescent, with straight veins; plant usually glabrescent. 2a. Calyx strongly 2-lipped, upper lip with short, truncate teeth, veins obscure; corolla indistinctly lobed ...................................................................................................................................................................................................................
    [Show full text]