INTRODUCTION to PHYLOGENETICS: a STUDY of MAXIMUM PARSIMONY and MAXIMUM LIKELIHOOD METHODS by NAOMI R. IUHASZ a THESIS PRESENTED

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION to PHYLOGENETICS: a STUDY of MAXIMUM PARSIMONY and MAXIMUM LIKELIHOOD METHODS by NAOMI R. IUHASZ a THESIS PRESENTED INTRODUCTION TO PHYLOGENETICS: A STUDY OF MAXIMUM PARSIMONY AND MAXIMUM LIKELIHOOD METHODS By NAOMI R. IUHASZ A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2010 c 2010 Naomi R. Iuhasz 2 To my sister, Andreea Iuhasz 3 ACKNOWLEDGMENTS I take this opportunity to thank my supervisor, Dr. Sergei Pilyugin, for his expertise, kindness, and most of all, for his patience. I thank him also for many insightful conversations during the development of the ideas in this thesis, for the questions that challenged my understanding of the material, and for helpful comments on the text. I would like to express sincere gratitude to my thesis co-advisor Dr. Edward Braun, for taking me under his wing long before I knew anything about bio-mathematics and for his constant guidance throughout the journey that lead to this thesis. I also thank Dr. Rebecca Kimball and the entire Braun-Kimball lab for allowing an outsider to enter their niche and to learn from their expertise. I thank Dr. Murali Rao for his valuable suggestions. I am greatly indebted to Prof. Billy Gunnells for challenging me to pursue my interests in biology. My thanks and gratitude goes to Prof. Claire Kurtgis-Hunter for recognizing my potential and for being the first to encourage me to pursue a graduate degree. Above all, I thank my family who stood beside me and encouraged me constantly. My thanks to my grandparents for their love and sound advice, to my aunt for taking on the responsibility to see me through college, and especially to my father who is my role model. Special thanks and appreciation to Camilo for his constant support and unending encouragement. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS..................................4 LIST OF TABLES......................................6 LIST OF FIGURES.....................................7 ABSTRACT.........................................8 CHAPTER 1 INTRODUCTION...................................9 2 PRELIMINARIES................................... 12 2.1 Definition of Terms............................... 12 2.2 X-trees..................................... 13 2.3 Tree Shapes.................................. 15 2.4 X-splits..................................... 18 2.5 Characters and Convexity........................... 23 2.6 Character Compatibility............................ 27 3 MAXIMUM PARSIMONY.............................. 34 3.1 Classical Parsimony.............................. 34 3.2 Optimization on a Fixed Tree......................... 41 3.3 Tree Rearrangement Operations....................... 46 3.4 Relevance.................................... 49 4 MAXIMUM LIKELIHOOD.............................. 51 4.1 Basic Principles................................ 52 4.2 Models of Sequence Evolution........................ 54 4.3 Calculating Change Probabilities....................... 58 4.4 Differences in Perspective between Parsimony and Likelihood....... 60 REFERENCES....................................... 62 BIOGRAPHICAL SKETCH................................ 65 5 LIST OF TABLES Table page 2-1 Characters χ1, χ2, and χ3............................... 32 6 LIST OF FIGURES Figure page 2-1 (a) An X-tree. (b) A binary phylogenetic X-tree................... 13 2-2 The two tree shapes for B(6)............................. 16 2-3 A rooted tree shape.................................. 17 2-4 Edges e1 and e2 induce f1, 2, 3, 4gjf5, 6, 7, 8, 9g and f1, 2, 3, 4, 5, 6, 7gjf8, 9g X-splits respectively.................................. 19 2-5 One iteration of tree popping............................. 23 2-6 An X-tree and a mapping χt ............................. 24 2-7 Vertex disjoint subtrees................................ 26 2-8 Compatibility of characters. (a) A restricted chordal completion of int(C). (b) A maximal clique tree representation of G. (c) An X-tree on which each character in C is convex..................................... 33 3-1 (a) The X-tree. (b) A minimum extension of a character. (c) Edges forming a cut-set......................................... 37 3-2 A maximum-sized set of edge-disjoint proper paths................ 39 3-3 An Erdos¨ -Szekely´ path system........................... 40 3-4 Deficiencies of forward pass reconstruction..................... 43 3-5 (a) The X-tree. (b) Forward pass. (c) Backward pass............... 45 3-6 A schematic representation on the generic TBR operation............ 46 3-7 A schematic representation on the generic SPR operation............ 47 3-8 A schematic representation on the generic NNI operation............. 47 4-1 Overview of the calculation of the likelihood of a tree. (a) Hypothetical sequence alignment. (b) An unrooted tree for the four taxa in (a). (c) Tree after rooting at arbitrary interior vertex, in this case (6). (d) Likelihood of character χ..... 54 7 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science INTRODUCTION TO PHYLOGENETICS: A STUDY OF MAXIMUM PARSIMONY AND MAXIMUM LIKELIHOOD METHODS By Naomi R. Iuhasz May 2010 Chair: Sergei S. Pilyugin Major: Mathematics In this thesis we investigate the conceptual framework of phylogenetics together with two of the most popular methods of inferring phylogenetic relationships. Some notation and background concepts of graph theory are introduced. The general class of X-trees is presented together with its properties, shapes of trees, and X-splits. The functions of characters applied to trees make the connection between mathematics and biology. The notions of character convexity and compatibility are formalized. We also introduce and analyze the maximum parsimony and maximum likelihood methods of creating phylogenies, with comparison and contrast between the methods. 8 CHAPTER 1 INTRODUCTION The subject of this thesis was motivated by the undergraduate research conducted by this author in the field of computational biology. The premise of the undergraduate research was to re-evaluate the general assumption that the rate of molecular evolution and the rate of morphological evolution are in effect dissociated from each other. If there is a correlation between the two rates, there would be a universal rate of evolution for organisms and the expected number of changes (either morphological or molecular) during a certain period of evolutionary history would be proportional to that universal rate. Even with a universal rate, some variation in the number of changes is expected. This variance would reflect a Poisson process in the ideal case. The research tested whether the negative binomial method is an improved alternative over the Poisson method to accommodate the variation in the number of changes. Also, it tested whether there is a need to assume more variance to fit morphological change to the universal rate than to fit molecular change. Both negative binomial and Poisson methods were applied to phylogenetic trees that were computed using one of the widely known software packages for inferring phylogenetic trees, PAUP*. This thesis is a continuation of the undergraduate research in that it investigates the mathematical concepts on which phylogenetic trees are based on and how they are inferred from the available data. Phylogenetics is the biological discipline which studies the evolutionary relatedness among different organisms based on molecular and morphological information. This relatively new branch of biology has its roots in Charles Darwin’s theory of evolution. The quest to use present-day characteristics of a group of species to infer the historical relationships between them and their evolution from a common ancestor has been the subject of numerous studies. These relationships are consistently represented by an evolutionary (phylogenetic) tree, structure first proposed by Darwin himself. Initially, the relationships were drawn after studying the morphological characteristics of the species. 9 However, such criterion of comparison has its limitations due to simplistic assumptions about evolutionary processes and difficulty of comparison between very distantly related species or morphologically identical yet different species. The field of phylogenetics flourished with the discovery and study of molecular data which began in the late 1960s. Protein and genetic sequences provide an immensely richer pool of information which can be explored through a steadily growing number of methods and techniques. [32] The field of phylogenetics developed with a strong interdisciplinary foundation as it incorporates elements of mathematics, statistics, and computer science with biology. Here we will look at the mathematical aspect of the field. The reconstruction and analysis of phylogenetic trees involves almost exclusively discrete mathematics, mainly graph theory and probability theory. [32] Inferring a phylogenetic tree is an estimation procedure since the true tree is essentially unknowable. The estimation models employed calculate a ”best estimate” of an evolutionary history based on the incomplete information contained in the data. Phylogenetic inference methods seek to accomplish this goal in one of two ways: by defining a specific algorithm that leads to the determination of a tree or by defining a criterion for comparing alternative phylogenies to one another and deciding which is better. While in a purely algorithmic method the algorithm defines the tree selection criterion, in the criterion-based methods the
Recommended publications
  • Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
    PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R
    The caper package: comparative analysis of phylogenetics and evolution in R David Orme April 16, 2018 This vignette documents the use of the caper package for R (R Development Core Team, 2011) in carrying out a range of comparative analysis methods for phylogenetic data. The caper package, and the code in this vignette, requires the ape package (Paradis et al., 2004) along with the packages mvtnorm and MASS. Contents 1 Background 2 2 Comparative datasets 3 2.1 The comparative.data class and objects. .3 2.1.1 na.omit ......................................3 2.1.2 subset ......................................5 2.1.3 [ ..........................................5 2.2 Example datasets . .6 3 Methods and functions provided by caper. 7 3.0.1 Phylogenetic linear models . .7 3.0.2 Fitting phylogenetic GLS models: pgls ....................8 3.1 Optimising branch length transformations: profile.pgls...............9 3.1.1 Criticism and simplification ofpgls models: plot, anova and AIC...... 11 3.2 Phylogenetic independent contrasts . 12 3.2.1 Variable names in contrast functions . 12 3.2.2 Continuous variables: crunch .......................... 13 3.2.3 Categorical variables: brunch .......................... 13 3.2.4 Species richness contrasts: macrocaic ..................... 14 3.2.5 Phylogenetic signal: phylo.d .......................... 15 3.3 Checking and comparing contrast models. 16 3.3.1 Testing evolutionary assumptions: caic.diagnostics............. 16 3.3.2 Robust contrasts: caic.robust ......................... 17 3.3.3 Model criticism: plot .............................. 19 3.3.4 Model comparison: anova & AIC ........................ 20 3.4 Other comparative functions . 21 3.4.1 Tree imbalance: fusco.test .......................... 21 3.5 Phylogenetic diversity: pd.calc, pd.bootstrap and ed.calc............
    [Show full text]
  • Probabilistic Methods Surpass Parsimony When Assessing Clade Support in Phylogenetic Analyses of Discrete Morphological Data
    O'Reilly, J., Puttick, M., Pisani, D., & Donoghue, P. (2017). Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology. https://doi.org/10.1111/pala.12330 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/pala.12330 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/pala.12330/abstract. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ [Palaeontology, 2017, pp. 1–14] PROBABILISTIC METHODS SURPASS PARSIMONY WHEN ASSESSING CLADE SUPPORT IN PHYLOGENETIC ANALYSES OF DISCRETE MORPHOLOGICAL DATA by JOSEPH E. O’REILLY1 ,MARKN.PUTTICK1,2 , DAVIDE PISANI1,3 and PHILIP C. J. DONOGHUE1 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected]; [email protected]; [email protected]; [email protected] 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK 3School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK Typescript received 28 April 2017; accepted in revised form 13 September 2017 Abstract: Fossil taxa are critical to inferences of historical 50% support.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
    [Show full text]
  • Phylocode: a Phylogenetic Code of Biological Nomenclature
    PhyloCode: A Phylogenetic Code of Biological Nomenclature Philip D. Cantino and Kevin de Queiroz (equal contributors; names listed alphabetically) Advisory Group: William S. Alverson, David A. Baum, Harold N. Bryant, David C. Cannatella, Peter R. Crane, Michael J. Donoghue, Torsten Eriksson*, Jacques Gauthier, Kenneth Halanych, David S. Hibbett, David M. Hillis, Kathleen A. Kron, Michael S. Y. Lee, Alessandro Minelli, Richard G. Olmstead, Fredrik Pleijel*, J. Mark Porter, Heidi E. Robeck, Greg W. Rouse, Timothy Rowe*, Christoffer Schander, Per Sundberg, Mikael Thollesson, and Andre R. Wyss. *Chaired a committee that authored a portion of the current draft. Most recent revision: April 8, 2000 1 Table of Contents Preface Preamble Division I. Principles Division II. Rules Chapter I. Taxa Article 1. The Nature of Taxa Article 2. Clades Article 3. Hierarchy and Rank Chapter II. Publication Article 4. Publication Requirements Article 5. Publication Date Chapter III. Names Section 1. Status Article 6 Section 2. Establishment Article 7. General Requirements Article 8. Registration Chapter IV. Clade Names Article 9. General Requirements for Establishment of Clade Names Article 10. Selection of Clade Names for Establishment Article 11. Specifiers and Qualifying Clauses Chapter V. Selection of Accepted Names Article 12. Precedence Article 13. Homonymy Article 14. Synonymy Article 15. Conservation Chapter VI. Provisions for Hybrids Article 16. Chapter VII. Orthography Article 17. Orthographic Requirements for Establishment Article 18. Subsequent Use and Correction of Established Names Chapter VIII. Authorship of Names Article 19. Chapter IX. Citation of Authors and Registration Numbers Article 20. Chapter X. Governance Article 21. Glossary Table 1. Equivalence of Nomenclatural Terms Appendix A.
    [Show full text]
  • Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights Into the Historical Biogeography of the Eurasian Lynx Lynx Lynx
    G C A T T A C G G C A T genes Article Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx Deniz Mengüllüo˘glu 1,*, Hüseyin Ambarlı 2 , Axel Barlow 3 , Johanna L. A. Paijmans 4,5 , Ali Onur Sayar 6 , Hasan Emir 7, Irfan˙ Kandemir 8, Heribert Hofer 1,9,10 , Jörns Fickel 1,4 and Daniel W. Förster 1 1 Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; [email protected] (H.H.); [email protected] (J.F.); [email protected] (D.W.F.) 2 Department of Wildlife Ecology and Management, Faculty of Forestry, Düzce University, Düzce 81620, Turkey; [email protected] 3 School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; [email protected] 4 Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany; [email protected] 5 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 6 Department of Game and Wildlife, Cankiri Karatekin University, Cankiri 18100, Turkey; [email protected] 7 Wildlife Department of General Directorate of Nature Conservation and National Parks, Turkish Ministry of Agriculture and Forestry, Ankara 06000, Turkey; [email protected] 8 Department of Biology, Ankara University, Ankara 06000, Turkey; [email protected] Citation: Mengüllüo˘glu,D.; Ambarlı, 9 Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 10315 Berlin, Germany H.; Barlow, A.; Paijmans, J.L.A.; Sayar, 10 Department of Veterinary Medicine, Freie Universität Berlin, 10315 Berlin, Germany ˙ A.O.; Emir, H.; Kandemir, I.; Hofer, * Correspondence: [email protected] H.; Fickel, J.; Förster, D.W.
    [Show full text]
  • Of Parrots 3 Other Major Groups of Parrots 16
    ONE What are the Parrots and Where Did They Come From? The Evolutionary History of the Parrots CONTENTS The Marvelous Diversity of Parrots 3 Other Major Groups of Parrots 16 Reconstructing Evolutionary History 5 Box 1. Ancient DNA Reveals the Evolutionary Relationships of the Fossils, Bones, and Genes 5 Carolina Parakeet 19 The Evolution of Parrots 8 How and When the Parrots Diversified 25 Parrots’ Ancestors and Closest Some Parrot Enigmas 29 Relatives 8 What Is a Budgerigar? 29 The Most Primitive Parrot 13 How Have Different Body Shapes Evolved in The Most Basal Clade of Parrots 15 the Parrots? 32 THE MARVELOUS DIVERSITY OF PARROTS The parrots are one of the most marvelously diverse groups of birds in the world. They daz- zle the beholder with every color in the rainbow (figure 3). They range in size from tiny pygmy parrots weighing just over 10 grams to giant macaws weighing over a kilogram. They consume a wide variety of foods, including fruit, seeds, nectar, insects, and in a few cases, flesh. They produce large repertoires of sounds, ranging from grating squawks to cheery whistles to, more rarely, long melodious songs. They inhabit a broad array of habitats, from lowland tropical rainforest to high-altitude tundra to desert scrubland to urban jungle. They range over every continent but Antarctica, and inhabit some of the most far-flung islands on the planet. They include some of the most endangered species on Earth and some of the most rapidly expanding and aggressive invaders of human-altered landscapes. Increasingly, research into the lives of wild parrots is revealing that they exhibit a corresponding variety of mating systems, communication signals, social organizations, mental capacities, and life spans.
    [Show full text]
  • Definitions in Phylogenetic Taxonomy
    Syst. Biol. 48(2):329–351, 1999 Denitions in PhylogeneticTaxonomy:Critique and Rationale PAUL C. SERENO Department of Organismal Biologyand Anatomy, Universityof Chicago, 1027E. 57thStreet, Chicago, Illinois 60637, USA; E-mail: [email protected] Abstract.—Ageneralrationale forthe formulation andplacement of taxonomic denitions in phy- logenetic taxonomyis proposed, andcommonly used terms such as“crown taxon”or “ node-based denition” are more precisely dened. In the formulation of phylogenetic denitions, nested refer- ence taxastabilize taxonomic content. Adenitional conguration termed a node-stem triplet also stabilizes the relationship between the trio of taxaat abranchpoint,in the face of local changein phylogenetic relationships oraddition/ deletion of taxa.Crown-total taxonomiesuse survivorship asa criterion forplacement of node-stem triplets within ataxonomic hierarchy.Diversity,morphol- ogy,andtradition alsoconstitute heuristic criteria forplacement of node-stem triplets. [Content; crown; denition; node;phylogeny; stability; stem; taxonomy.] Doesone type ofphylogenetic denition Mostphylogenetic denitions have been (apomorphy,node,stem) stabilize the taxo- constructedin the systematicliterature since nomiccontent of ataxonmore than another then withoutexplanation or justi cation for in the face oflocal change of relationships? the particulartype ofde nition used. The Isone type of phylogenetic denition more justication given forpreferential use of suitablefor clades with unresolved basalre- node- andstem-based de nitions for crown
    [Show full text]