Allan Sandage (1926–2010) Astronomer Who Measured Expansion Rate of the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Allan Sandage (1926–2010) Astronomer Who Measured Expansion Rate of the Universe COMMENT OBITUARY Allan Sandage (1926–2010) Astronomer who measured expansion rate of the Universe. llan Rex Sandage was one of the most to measure very large distances, and led a fostered by Hubble himself, became prevail- prolific and influential astronomers Hubble Space Telescope team to calibrate ing when the stunningly large redshifts of of the second half of the twentieth their luminosity. quasars were discovered in 1963. Sandage’s Acentury. Edwin Hubble and Walter Baade By 1958, Sandage had massively revised work was instrumental in settling the debate both left their scientific papers to him, and Hubble’s estimates of galactic distances, in favour of an expanding Universe. he continued the work of these two giants increasing them by a factor of about 7. From with spectacular results — including the this he determined an expansion rate of the QUIET DISCOVERIES first good estimates of the Hubble constant Universe, otherwise known as the Hubble Sandage was actively involved in the and the age of the Universe. constant, of about 75 kilometres per second discovery of quasars — enigmatic objects These are his best known achievements, per megaparsec, and an age of the Universe first detected by radio astronomers in but they comprised only a small part of his of around 13 billion years. Today’s best the late 1950s. Sandage provided some publications, which number in excess of 500. estimates are, remarkably, essentially the of their first optical identifications and In 1956, Sandage became a staff member of same — albeit with smaller errors. the first spectrum. He also co-discovered the Mount Wilson and Palomar observa- radio-quiet quasars, and showed that these tories in California; his retirement almost objects greatly outnumber their radio-loud 50 years later did not stop him from working counterparts. In 1963, he co-wrote a paper until the very end — his last paper is still in on violent processes in galactic centres that the press. He died, aged 84, on 13 November anticipated today’s explanation of quasars as 2010 at his home in San Gabriel, California, being very distant galactic nuclei powered from pancreatic cancer. He is survived by his by black holes. BELLO/SPL F. OF ESTATE caring astronomer wife Mary Sandage and Sandage’s most cited paper is from 1962, his two sons David and John. in which he theorized how the pancake- Sandage was born on 18 June 1926 in Iowa shaped Milky Way was formed by the City, Iowa, as the only child of a powerful collapse of a spherical gas cloud. This work father — a professor of advertising — and remains the basis of modern theories of loving mother. He received his BA in 1948 galaxy formation. from the University of Illinois at Urbana– Sandage also authored several essays on Champaign and then moved to the California the history of modern astronomy, including Institute of Technology in Pasadena, Califor- a monumental history of the Mount Wilson nia, for his PhD. Here he became Hubble’s Observatory. assistant in 1952, a year before completing In mid-career, Allan became deeply con- his degree and Hubble’s sudden death. He cerned about the meaning of life. He studied chose Baade as his thesis adviser, and Baade the Bible and spoke in public about science went on to teach him all the intricacies of the and religion as “two separate closets in the observing techniques of the time. This made same house’’. In the end he highly valued Sandage, who spent roughly 2,000 nights at Christian philosophy, but did not find faith. the telescope during his lifetime, an outstand- He resolved to work to the limit of exhaustion. ing observer. He published the famous book Some people thought that he was ambi- The Hubble Atlas of Galaxies, followed by a Perhaps his seminal work was his 1961 tious, but his drive came from his conviction further two colossal atlases containing some paper ‘The ability of the 200-inch telescope that work was the only meaningful human of the best ground-based pictures of galaxies to discriminate between selected world activity. For Allan, life was not about fun. ever taken. models’, which has become the basis of Allan sometimes called himself a modern observational cosmology. In it, curmudgeon. But in his social life he was EXPANDING THE UNIVERSE Sandage calculated what the past and future radiant with charm and wit; his after-dinner From the very beginning of his career, would look like under different models of talks could make his audience explode with Sandage was a star. His 1953 PhD thesis an expanding Universe and predicted the laughter. He loved books and was a fan of reversed the thinking of the day that faint consequences for an observer. opera. His favourite time was sitting at the ‘main sequence’ stars started their lives as red On the back of these predictions, Sandage dark telescope, as he did for so many nights giants; his measurements of the M3 globular single-handedly mounted a giant programme of his life, taking long exposures while the cluster led to the conclusion that the oppo- to extend the Hubble diagram, which charts dome reverberated with the music of com- site order was correct. This was a revolution redshifts of galaxies (a measure of how fast poser Richard Wagner. ■ in the understanding of stellar evolution. they are moving away from Earth) against Sandage continued to work on determining their relative distances. This became the Gustav A. Tammann is professor emeritus the distances and ages of clusters, as well as crucial piece of evidence that helped to dis- at the University of Basel, CH-4003 Basel, on the properties of their variable stars — the pel doubts about whether very large redshifts Switzerland, and was a co-author of Allan RR Lyrae and Cepheid stars — all his life. are really caused by cosmic expansion, or by Sandage for almost 50 years. He was one of the first to use supernovae some as-yet-unknown physics. Such doubts, e-mail: [email protected] 898 | NATURE | VOL 468 | 16 DECEMBER 2010 © 2010 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • 2016-2017 Year Book Www
    1 2016-2017 YEAR BOOK WWW. C A R N E G I E S C I E N C E . E D U Department of Embryology 3520 San Martin Dr. / Baltimore, MD 21218 410.246.3001 Geophysical Laboratory 5251 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8900 Department of Global Ecology 260 Panama St. / Stanford, CA 94305-4101 650.462.1047 The Carnegie Observatories 813 Santa Barbara St. / Pasadena, CA 91101-1292 626.577.1122 Las Campanas Observatory Casilla 601 / La Serena, Chile Department of Plant Biology 260 Panama St. / Stanford, CA 94305-4101 650.325.1521 Department of Terrestrial Magnetism 5241 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8820 Office of Administration 1530 P St., N.W. / Washington, DC 20005-1910 202.387.6400 2 0 1 6 - 2 0 1 7 Y E A R B O O K The President’s Report July 1, 2016 - June 30, 2017 C A R N E G I E I N S T I T U T I O N F O R S C I E N C E Former Presidents Daniel C. Gilman, 1902–1904 Robert S. Woodward, 1904–1920 John C. Merriam, 1921–1938 Vannevar Bush, 1939–1955 Caryl P. Haskins, 1956–1971 Philip H. Abelson, 1971–1978 James D. Ebert, 1978–1987 Edward E. David, Jr. (Acting President, 1987–1988) Maxine F. Singer, 1988–2002 Michael E. Gellert (Acting President, Jan.–April 2003) Richard A. Meserve, 2003–2014 Former Trustees Philip H. Abelson, 1978–2004 Patrick E.
    [Show full text]
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • Volume LX I, I 9
    CALIFORNIA INSTITUTE Of TECHNOLOGY E N GI N E E Volume LX I, N II1llber 3, I 9 9 8 IN THIS ISSUE • Prosecuting Science Simulating Molecules Observing Anniversaries London Bridge? The Manhattan skyline? No, it's an oil refinery. figuring out how to squeeze more gasoline rrom a barrel or crude is just one project a group or theoretical chemists at Caltech have taken on in a series or academic­ industrial collaborations. for more on this partner­ sh ip, see the story on page 20. Photo courtesy or Chevron Corporation. \ California Inst i tute of Technology 2 Random Wa l k 10 Scie ntific Fraud and Misconduct in American Po litica l Cu lture : Reflections on the Baltimore Case - by Dan ie l J. Kevles Excessive zeal on the part of legislators and the media hyped public suspicion of scientists' behavior. 20 " H ave Method , Wi ll T rave l" - by Douglas L. Smi t h Computational chemistry ventures into the Real World as Cal tech theorists tackle industrial problems. 30 Tw o A s tronomical Anniv ers aries : Palomar at 50 Still going strong , the hale and hearty Hale Telescope hits the half century mark. 36 ... and OVRO at 40 Radio astronomers parry, too. On t he Cover: The six IO.4·meter antennas (one 42 Boo ks - The Earth in Tf{rmoil by Kerr y Si eh a n d S i mon LeVay is hidden behind the others here) of the Owe ns 43 Faculty Fil e Valley Radio Observat ory millimeter· wave array can receive signals from up t o Engineering & Science (ISSN 0013-7812) is published Warren G.
    [Show full text]
  • Scientific Fraud ) !J." } .::; :"I~ I ::.T:U!O L.~ 4-F, J T.F;;­
    California Institute of Technology Engineering & Science Winter 1991 7 _ 4 In this i.sue I;', ~l. 1,150/" q-, >'h 11 1,3t J,~, ~ ~ 0 '., ';.. '".l.l b: -)1 f' I.f): ., 0.',)9 First Lights > 1-" I , - , ,,LJ~'7 Scientific Fraud ) !J." } .::; :"I~ I ::.t:u!o l.~ 4-f, j t.f;;­ . - '-I~ /2.- .o1l-/r, I) .... ,; "'. t'+t -. 'b~, 1.1 If • ~ ~ ;,, ~I loJ I( 1",_ Technology Lf~IOr 3f7U " i~ "" If l!f Transfer /1 11 " • , ;,).lJ h~ ,, ~ ~ "!> ~, "_ /.>, Is ~I ).. a.- I ~ 4; 7 Semiconductor I I >'f , ,, 1> "II , .... ., Quality Control 'Is i" ,, 0,./, 'i 'l{'1- , ~ ' '''1 i' r 'I $7(, '>'/11 "-1, > • ~'i 1,0:, ~ ~ .., ~I -: /' q, ' " c. t. , u- f'! ~~~ ":lk.i e ... ,- , 11J 3 0 'f l.- , . fo'l' '" ~. "f I ~. (,. I ~ - '>- , ? tl6 . o I,! .,.!- .. - 31.r~{, ) .' J S"7 J. ) , F., a The 10·meter Keck Telescope saw first light in November 1990. California Institute of Technology Winter 1991 Volume LlV, Number 2 2 First Lights The lO-rneter Keck Telescope, with one quarter of its mirror segments installed, produces its first image; its predecessors had different definitions of "first light," as well as different problems. 10 Scientific Fraud - by David Goodstein Caltech's vice provost offers an opinion of what it is and what it isn't, and defends a couple of famous physicists against false charges. 20 Deposit Insurance The layers that make up a computer chip are deposited inside a sealed chamber. A new way to see what's going on within the chamber can improve chip quality.
    [Show full text]
  • Dancing to the Tempo of LEP
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 40 NUMBER 10 DECEMBER 2000 Dancing to the tempo of LEP SPIN SUPERSYMMETRY INTERNET Polarized protons accelerated Striking suggestions for How the Web was Born, a new in new RHIC ring p8 additional physics symmetry pl7 book p43 E RI Hew Gêner CES Creative Electronic Systems 70 route du Hunt-dun*! CH-1213 Petit-Uncy, Switzerland Internet: nttp://www.ces.cft I The Ultimate VME Machine CES Switzeriand The RI03 features a twin bus architecture, a Tel: ^41.22.879.51.00 ifque fnter-processor communication mechanism Fax: +4U2.792.57.4d Email; [email protected] for ultra-high-speed data acquisitions g and user-level load balance control CES.O Germany with dedicated hardware. Tel: +49.60.51.96.97.41 Fax; +49.60,51.96.97.33 Sheer Speed: Êttuiil: [email protected] # • VME - block transfers in 2eSST at CES MSâ 300 MBytes/s, single cycles at 20 MBytes/s Tel:+ 1.518.843.1445 Fax;+1.518.643.1447 * Memory - 400 MBytes/s average, Email: [email protected] 800 MBytes/s peak • Multi-Access - VME + PCM + PCI 2 + CPU without global degradation CPU Power: PowerPC 750 or 7400 at maximum available speed I Flexible: Two Independent 64-bit PCI with simultaneous access to the memory I Scalable: Up to four additional PMC's on a PMC carrier system MFCC 844x PMC PROCESSORS • 130 KGates user-FPGA • Continuous acquisition at 50 MBytes/s In 32 or 64~bit mode • Full 750 / 7400 computing core • Full network services on PCI * Complete multi-processing software with connection oriented high-speed data transfers SOFTWARE SUPPORT VxWorics®, Lynxob®, muecat® and LINUX® development software including support for hard real-time target machines.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • Reflections December 2020
    Surviving the Bobcat Fire By Robert Anderson As recently as December 9, our solar astronomer, Steve Padilla, was taking his evening walk and noticed the smoke of a hotspot flaring up in the canyon just below the Observatory. It was a remnant of the Bobcat Fire, which started nearby on September 6. The local Angeles National Forest firefighters were notified of the flareup, either to monitor it or extinguish it if needed. They have returned many times during the last three months. And we are always glad to see them, especially those individuals who put water to flame here and battled to save the most productive and famous observatory in history. On the sunny Labor Day weekend, when the Bobcat Fire started near Cogswell Reservoir in a canyon east of the Mount Wilson, the Observatory’s maintenance staff went on cautious alert. As the fire spread out of control, it stayed to the east burning north and south of the reservoir for days, threatening communities in the foothills of the San Gabriels. Nevertheless, all non-essential staff and residents were evacuated off the mountain just in case. Under a surreal, smoke-filled September sky, crews David Cendejas, the superintendent of the Observatory, prepare to defend the Observatory. Photo: D. Cendejas and a skeleton crew of CHARA staff, stayed to monitor the situation and to secure the grounds. Routine year- round maintenance of Mount Wilson always includes In this issue . clearing a wide perimeter of combustibles from the buildings, but when a large fire is burning nearby, clearing Surviving the Fire ……………1 Betelgeuse & Baade …………….5 anything that has been missed becomes an urgent priority, News + Notes .….………………2 Thanks to our Supporters! ..….7 along with double-checking all the fire equipment.
    [Show full text]
  • Physicists Look to a New Telescope to Understand Neutron Stars and Matter at the Extremes INNER WORKINGS
    Correction INNER WORKINGS Correction for “Inner Workings: Physicists look to a new tele- scope to understand neutron stars and matter at the extremes,” by Stephen Ornes, which was first published November 4, 2020; 10.1073/pnas.2021447117 (Proc.Natl.Acad.Sci.U.S.A.117, 29249–29252). The editors note that ref. 5 appeared incorrectly. It should instead appear as below. The online version has been corrected. 5. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 16, 907–910 (2020). Published under the PNAS license. First published December 21, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2024053117 CORRECTION www.pnas.org PNAS | December 29, 2020 | vol. 117 | no. 52 | 33719 Downloaded by guest on October 2, 2021 INNER WORKINGS Physicists look to a new telescope to understand neutron stars and matter at the extremes INNER WORKINGS Stephen Ornes, Science Writer Astronomers ostensibly know plenty about neutron matter at such high densities has long been a puzzle,” stars: the hot, collapsed remnants of massive stars says Arzoumanian. Now a small, boxy X-ray telescope that have exploded as supernovae. These objects mounted on the International Space Station is spilling can spin up to hundreds of times a second, generate the inner secrets of these stars. Called the Neutron intense magnetic fields, and send out jets of radia- Star Interior Composition Explorer, or NICER, it can tion that sweep the sky like beams from a lighthouse. measure the size and mass of neutron stars, revealing When two neutron stars collide, the ripples in space- their true density.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • E F L E C T I O N S a Man Not Known to Sleep E
    s u m m e r . q u a r t e r / j u n e . 2 0 1 4 r e f l e c t i o n s a man not known to sleep E. E. Barnard on Mount Wilson According to Allan Sandage, Edward Emerson Barnard was “the last of the great visual observers and the first of the long line of photo- graphic atlas makers with wide-angle telescopes.” William Sheehan, Barnard’s biographer, wrote that he deserves special recognition as “one of the most versatile astronomers of the 19th century, perhaps the last to master the entire field of observational astronomy, and a marvelous visual and photographic observer as well.” Yet Barnard is little known today outside of astronomical circles. Barnard worked on Mount Wilson for about 8 months in 1905. He at mount wilson observatory in 1905 From left: H. L. Miller, Charles G. Abbot, George Ellery Hale, Leonard Ingersoll, Ferdinand Ellerman, was on leave from Yerkes Observatory, along with a Yerkes telescope. Walter S. Adams, Edward Emerson Barnard, Charles Backus. Only Hale, This brief period yielded 40 of the 50 fields of Barnard’s magnificent Adams, Ellerman, and Backus were permanent staff members. star atlas — An Atlas of Selected Regions of the Milky Way — published in 1927. The Milky Way atlas represents the first use of a photographic observations of the night sky and became fascinated with comets, telescope, an unusual instrument sponsored by (and named after) which he began hunting on a methodical basis. Finding that a patron Catherine Wolfe Bruce.
    [Show full text]
  • Speed of Light and Rates of Clocks in the Space Generation Model of Gravitation, Part 1
    GravitationLab.com Speed of Light and Rates of Clocks in the Space Generation Model of Gravitation, Part 1 1 R. BENISH( ) (1) Eugene, Oregon, USA, [email protected] Abstract. — General Relativity’s Schwarzschild solution describes a spherically symmetric gravi- tational field as an utterly static thing. The Space Generation Model (SGM) describes it as an absolutely moving thing. The SGM nevertheless agrees equally well with observations made in the fields of the Earth and Sun, because it predicts almost ex- actly the same spacetime curvature. This success of the SGM motivates deepening the context—especially with regard to the fundamental concepts of motion. The roots of Einstein’s relativity theories thus receive critical examination. A particularly illumi- nating and widely applicable example is that of uniform rotation, which was used to build General Relativity (GR). Comparing Einstein’s logic to that of the SGM, the most significant difference concerns the interpretation of the readings of accelerom- eters and the rates of clocks. Where Einstein infers relativity of motion and space- time symmetry, it is argued to be more logical to infer absoluteness of motion and spacetime asymmetry. This approach leads to reassessments of the essential nature of matter, time, and the dimensionality of space, which lead in turn to some novel cos- mological consequences. Special emphasis is given to the model’s deviations from standard predictions inside matter, which have never been tested, but could be tested by conducting a simple experiment. PACS 04.80.Cc – Experimental tests of gravitational theories. 1. – Introduction; Intended Audience Beware ye, all those bold of spirit who want to suggest new ideas.
    [Show full text]
  • 1949–1999 the Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics
    P1: FHN/fkr P2: FHN/fgm QC: FHN/anil T1: FHN September 9, 1999 19:34 Annual Reviews AR088-11 Annu. Rev. Astron. Astrophys. 1999. 37:445–86 Copyright c 1999 by Annual Reviews. All rights reserved THE FIRST 50 YEARS AT PALOMAR: 1949–1999 The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics Allan Sandage The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 Key Words stellar evolution, observational cosmology, radio astronomy, high energy astrophysics PROLOGUE In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics.
    [Show full text]