The Extinct Wasp Family Serphitidae in Late Cretaceous Vendean Amber (Hymenoptera) Michael S

Total Page:16

File Type:pdf, Size:1020Kb

The Extinct Wasp Family Serphitidae in Late Cretaceous Vendean Amber (Hymenoptera) Michael S The extinct wasp family Serphitidae in Late Cretaceous Vendean amber (Hymenoptera) Michael S. Engel, Vincent Perrichot To cite this version: Michael S. Engel, Vincent Perrichot. The extinct wasp family Serphitidae in Late Cretaceous Vendean amber (Hymenoptera). Paleontological Contributions, 2014, 10J, pp.46-51. insu-01093093 HAL Id: insu-01093093 https://hal-insu.archives-ouvertes.fr/insu-01093093 Submitted on 10 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Paleontological Contributions Number 10J The extinct wasp family Serphitidae in Late Cretaceous Vendean amber (Hymenoptera) Michael S. Engel and Vincent Perrichot December 1, 2014 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Paleontological Contributions December 1, 2014 Number 10J THE EXTINCT WASP FAMILY SERPHITIDAE IN LATE CRETACEOUS VENDEAN AMBER (HYMENOPTERA) Michael S. Engel1 and Vincent Perrichot2,3* 1Division of Entomology (Paleoentomology), and Department of Ecology & Evolutionary Biology, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045, USA, [email protected], 2CNRS UMR 6118 Géosciences & Observatoire des Sciences de l’Univers de Rennes, Université Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France, and 3University of Kansas Biodiversity Institute, Division of Ento- mology (Paleoentomology), Lawrence, Kansas 66045, USA, [email protected] ABSTRACT A new species of the extinct genus Serphites Brues (Proctotrupomorpha: Bipetiolarida: Serphitidae) is described from two individuals preserved in Late Cretaceous (Cenomanian to Santonian) amber from Vendée, northwestern France. Serphites fan- nyae n. sp., is distinguished from its congeners and brief comments are made on the significance of finding a serphitid wasp in Vendean amber as well as potential character polarities in the family Serphitidae. Keywords: Insecta, Apocrita, Proctotrupomorpha, Bipetiolarida, Cretaceous, France RÉSUMÉ Une nouvelle espèce du genre fossile Serphites Brues (Proctotrupomorpha: Bipetiolarida: Serphitidae) est décrite d’après deux spécimens préservés dans l’ambre crétacé supérieur (Cénomanien à Santonien) de Vendée, dans le nord-ouest de la France. Serphites fannyae n. sp., est comparée à ses congénères et la présence d’un Serphitide dans l’ambre de Vendée est brièvement commentée ainsi que la possible polarité de caractères pour la famille Serphitidae. Mots-clés: Insecta, Apocrita, Proctotrupomorpha, Bipetiolarida, Crétacé, France INTRODUCTION & Engel, 2011), Spathiopterygidae of the Diaprioidea (Engel & There are several families of Hymenoptera which are diagnostic others, 2013), and Falsiformicidae of the Chrysidoidea (Rasnistyn, for the Cretaceous. Each of these families is known almost exclu- 1975; Perrichot & others, 2014). In all cases but Falsiformicidae, sively from amber and typically ranges from the Early Cretaceous individuals are relatively small and their virtual exclusivity to amber through the latter stages of the Mesozoic, and obviously none have is assuredly a representation of the suitability of this medium for been hitherto discovered in the Paleogene. These families include preserving minute organisms with sufficient fidelity. Not surprisingly the Maimetshidae of the Trigonalyoidea (Perrichot & others, 2011), for clades of Mesozoic parasitoids, hosts of these lineages remain Serphitidae of the Serphitoidea (Brues, 1937; Kozlov & Rasnitsyn, unknown and entirely speculative thereby hindering any conclusions 1979; McKellar & Engel, 2011a; Engel, Grimaldi, & Ortega-Blanco, as to whether the occurrence of their victims greatly influences their 2011; Ortega-Blanco & others, 2011a), Alavarommatidae and Gal- presence and abundance in specific deposits, although some kind lorommatidae of the Mymarommatoidea (Engel & Grimaldi, 2007; Gibson, Read, & Huber, 2007; Ortega-Blanco & others, 2011b), of association must assuredly exist. Syninclusions have provided to Stigmaphronidae and Radiophronidae of the Ceraphronoidea (Ko- date no insight into possible host taxa and all that can be surmised zlov, 1975; Engel & Grimaldi, 2009; Ortega-Blanco, Rasnitsyn, & has come from their phylogenetic association with related lineages Delclòs, 2010; McKellar & Engel, 2011b; Ortega-Blanco, Delclòs, (e.g., Engel & Grimaldi, 2009). *Corresponding author. © 2014, The University of Kansas, Paleontological Institute. | urn:lsid:zoobank.org:pub:88C67F1B-11B3-4A35-9FEF-ACCE4E3A8C08 Engel and Perrichot— New Serphites from French amber 47 The family Serphitidae was first recognized by Brues (1937) based road between La Garnache and Challans, in the department of Ven- on a couple of male inclusions in Campanian amber from Alberta, dée, northwestern France. In a preliminary account of this amber Canada. As can be deduced from the name, Brues considered the deposit, Perrichot and others (2013) suggested a Santonian age but family to be related to the Serphidae (a synonym of Proctotrupidae), contradictory data have been found since then, so an uncertainty although he did note several possible associations and placed particular remains on the exact age and until new elements are found we can- emphasis on the two-segmented petiole, an otherwise rare feature not discriminate between Middle Cenomanian, Turonian, or Early among the Hymenoptera. Subsequent to Brues’s (1937) account there Santonian (≈ 97–85 Ma), as discussed by Perrichot and Néraudeau remained almost no work on the family for nearly half a century. In (2014: 10A in this volume). Morphological terminology and the 1979, Kozlov and Rasnitsyn described several new serphitids, includ- format for the description generally follows that of Engel, Grimaldi, ing two new genera, from the Cenomanian and Santonian amber of and Ortega-Blanco (2011) and McKellar and Engel (2011a). Photo- Siberia and noted a number of traits shared between serphitids and graphs were taken with a Canon 5D Mark II digital camera attached the Mymarommatidae, particularly the form of the two-segmented to a Leica MZ APO stereomicroscope, and stacks of images taken petiole (later the combined clade was named Bipetiolarida). Indeed, at different depths of field were merged using Helicon Focus 5.3 Kozlov and Rasnitsyn (1979) suggested merging the two as subfami- (HeliconSoft Ltd) to obtain sharpness throughout the entire images. lies within a single family. Again, the group remained dormant until Metrics were taken with an ocular micrometer set on an Olympus recently several additional taxa were added based on a revision of the SZX-12 stereomicroscope. original Canadian fauna (McKellar & Engel, 2011a) as well as mate- rial from the Albian of Spain (Ortega-Blanco & others, 2011a) and SYSTEMATIC PALEONTOLOGY Turonian of New Jersey (Engel, Grimaldi, & Ortega-Blanco, 2011). Family SERPHITIDAE Brues, 1937 A review of the fauna from Burmese amber is presently underway Genus SERPHITES Brues, 1937 by one of us. Recently, two serphitids have been recovered in the Type species.—Serphites paradoxus Brues, 1937, p. 33, fig. 5A. Cenomanian–Santonian amber of Vendée in northwestern France. Included species.— Presently 12 species included in the genus Herein is provided a brief account of this material. (see the key below). MATERIAL AND METHODS Comment.—The emended generic diagnosis by McKellar and Engel (2011a) is followed here and requires no modification to The material comprises two specimens. The first individual (Figs. incorporate the present species. J1.1, J2.2) is preserved in a small piece of clear yellow amber with one true fly (Diptera: Dolichopodidae: Microphorinae: Microphorites Key to species of Serphites magaliae Perrichot & Engel – see issue 10G in this volume) as a 1. Pterostigma isosceles ............................................................... 2 syninclusion. The specimen is mostly complete, although the gaster Pterostigma equilateral ........................................................... 3 is missing beyond the first gastral segment and portions of some legs 2. Body small, 1.3 mm long in male; 1st petiolar segment twice as are missing at the amber surface. Some areas are difficult to observe long as 2nd petiolar segment, the latter flattened dorsally; gaster owing to deformities in the amber surface (particularly near the with lateral carina between tergites and sternites [Campanian, metasoma), a large blackened bit of debris to the specimen’s right, Canada] ....................................................... S. paradoxus Brues and the position of M. magaliae masking the specimen’s face. The Body large, 3.0 mm long in female; 1st petiolar segment 3× as second serphitid (Figs. J1.2, J2.1) is similarly preserved but rests long as 2nd petiolar segment, the latter not flattened dorsally; alongside a darkened fracture plane rendering it impossible to see the gaster longer than mesosoma, without lateral carina [Santonian, specimen in dorsal-oblique view from the left. This orientation also Taimyr] ......................................... S. gigas Kozlov & Rasnitsyn resulted in the wings
Recommended publications
  • Novitates Paleoentomologicae No
    Novitates Paleoentomologicae No. 13, pp. 1–22 30 December 2015 A new family of primitive serphitoid wasps in ȱȱǻ ¢DZȱǼ Michael S. Engel1,2 Abstract.ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǻDZȱ Ǽȱ ȱ ȱ ȱ ęȱȱArchaeoserphitidae Engel, new family. The family is based on Archaeoserphites melqartiȱǰȱ ȱȱȱǰȱȱȱ¢ȱȱȱȱǰȱ ȱȱ ȱȱȱ ȬǰȱȱǯȱȱArchaeoserphites have several ȱȱȱȱȱǻe.gǯǰȱȱǰȱȱȱ¢ȱDzȱ ȱȱȱȱĚDzȱȱȱȱǼǰȱ ȱ¢ȱ¡ȱȱ ȱȱȱǻe.gǯǰȱȱ ȱǰȱ ȱ¢ȱ DzȱȱDzȱ ȱDzȱȱǼǯȱȱȱȱȱ¢ȱȱȱȱ¡ȱȱȱȱ ǰȱȱȱ¢ȱMicroserphitinaeȱǰȱ ȱ¢ǰȱȱǯ ȱȱȱȱȱȱȱȱȱȱ ȱ ¢ȱ ȱ Ȧ¢ȱ ¢ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱǻ ȱǭȱǰȱŘŖŖśǼǯȱȱȱȱȱȱȱȬ ȱȱȱȱȱǰȱ¢ȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ǻe.gǯǰȱ ǰȱŗşŝřDzȱ ǰȱŗşŞŜDzȱȱǭȱ ǰȱŘŖŖŚǰȱŘŖŖŜǰȱŘŖŖŝǰȱŘŖŗřDzȱǰȱ ŘŖŖřǰȱŘŖŖśǰȱŘŖŖŜǰȱŘŖŖŞDzȱȱet alǯǰȱŘŖŗřǰȱŘŖŗřDzȱȱet alǯǰȱŘŖŖŝDzȱȱǭȱǰȱŘŖŖŞDzȱ ȱet alǯǰȱŘŖŖşDzȱȬȱet alǯǰȱŘŖŖşǰȱŘŖŗŗǰȱŘŖŗŗǰȱŘŖŗŚDzȱÛȱet alǯǰȱŘŖŗŖDzȱ 1ȱȱȱ¢ǰȱȱ ¢ȱǰȱȱȱȱ¢ȱǭȱȬ ¢ȱ¢ǰȱŗśŖŗȱȱȱȮȱȱŗŚŖǰȱ¢ȱȱ ǰȱ ǰȱ ȱŜŜŖŚśȬ ŚŚŗśǰȱȱǻȓǯǼǯ 2ȱȱȱ ȱ¢ǰȱȱȱȱȱ ¢ǰȱȱȱȱȱ ŝşthȱǰȱ ȱǰȱ ȱȱŗŖŖŘŚȬśŗşŘǰȱǯ DZȱĴDZȦȦ¡ǯǯȦŗŖǯŗŝŗŜŗȦǯŖŗřǯśŖŜŚ Copyright © M.S. Engel. ȱȱĴȬȬȱŚǯŖȱ ȱǻȱȬȬȱŚǯŖǼǯ ȱŘřŘşȬśŞŞŖ 2 Novitates Paleoentomologicae No. 13 McKellar & Engel, 2012; McKellar et al., 2013; Olmi et al., 2014). Nonetheless, there are a series of distinctive extinct families that are almost hallmarks of the Cretaceous, representing apparently monophyletic groups that did not persist into the Cenozoic and were perhaps dwindling long before the Mesozoic came to its climactic closure. Each can be assigned to a superfamily and associated with their modern cousins, and inform us of the early branching events within these groups and of putatively ground- plan features aiding phylogenetic studies through the
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Phylogeny of the Hymenoptera: a Cladistic Reanalysis of Rasnitsyn's (1988) Data
    Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1988) data FREDRIK RONQUIST,ALEXANDR P. RASNITSYN,ALAIN ROY,KATARINA ERIKSSON &MAGNUS LINDGREN Accepted: 26 April 1999 Ronquist, F., Rasnitsyn, A. P., Roy, A., Eriksson, K. & Lindgren, M. (1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1998) data. Ð Zoologica Scripta 28, 13±50. The hypothesis of higher-level relationships among extinct and extant hymenopterans presented by Rasnitsyn in 1988 is widely cited but the evidence has never been presented in the form of a character matrix or analysed cladistically. We review Rasnitsyn's morphological work and derive a character matrix for fossil and recent hymenopterans from it. Parsimony analyses of this matrix under equal weights and implied weights show that there is little support for Rasnitsyn's biphyletic hypothesis, postulating a sister-group relationship between tenthredinoids and macroxyelines. Instead, the data favour the conventional view that Hymenoptera excluding the Xyelidae are monophyletic. Higher- level symphytan relationships are well resolved and, except for the basal branchings, largely agree with the tree presented by Rasnitsyn. There is little convincing support for any major divisions of the Apocrita but the Microhymenoptera and the Ichneumonoidea + Aculeata appear as monophyletic groups in some analyses and require only a few extra steps in the others. The Evaniomorpha appear as a paraphyletic grade of basal apocritan lineages and enforcing monophyly of this grouping requires a considerable increase in tree length. The Ceraphronoidea are placed in the Proctotrupomorpha, close to Chalcidoidea and Platygastroidea. This signal is not entirely due to loss characters that may have evolved independently in these taxa in response to a general reduction in size.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 10A Introduction to thematic volume “Fossil arthropods in Late Cretaceous Vendean amber (northwestern France)” Vincent Perrichot and Didier Néraudeau December 1, 2014 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Paleontological Contributions December 1, 2014 Number 10A INTRODUCTION TO THEMATIC VOLUME “FOSSIL ARTHROPODS IN LATE CRETACEOUS VENDEAN AMBER (NORTHWESTERN FRANCE)” Vincent Perrichot1,2* and Didier Néraudeau1 1CNRS UMR 6118 Géosciences & OSUR, Université Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France, [email protected], [email protected] and 2University of Kansas Biodiversity Institute, Division of Entomology (Paleoentomology), Lawrence, Kansas 66045, USA; There is growing knowledge of the insect and arachnid Cretaceous that has yielded relatively few insects (Choufani & others, 2013). diversity worldwide, most notably as a result of the discovery, in the All together, more than 2000 fossils of arthropods (arachnids, past twenty years, of numerous Konservat-Lagerstätten (highly fossil- myriapods, hexapods, and crustaceans) are currently recorded from iferous deposits) that provide a plethora of fossil arthropods (Wang these outcrops, but mostly from Albian-Cenomanian Charentese & Szwedo, 2014). Early Cretaceous (Berriasian–Aptian) insects are amber, in southwestern France (Perrichot & others, 2007; Perrichot known primarily from imprints in rocks, while fossiliferous amber & Néraudeau, 2009; Perrichot, Néraudeau, & Tafforeau, 2010; yielding arthropod inclusions range mostly from the Albian to the Girard & others, 2013). Campanian – the sole exception being Hauterivian-Barremian amber The present volume introduces systematic studies on fossil of Lebanon and Jordan. arthropods from a new amber deposit discovered in the early Late In France, only few (14) Cretaceous insect deposits are known, Cretaceous (Middle Cenomanian to Early Santonian, 97–85 Ma) of with their study still in a very nascent stage.
    [Show full text]
  • New Mantises (Insecta: Mantodea) in Cretaceous Ambers from Lebanon, Spain, and Myanmar
    Cretaceous Research 60 (2016) 91e108 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar * Xavier Delclos a, , Enrique Penalver~ b, Antonio Arillo c, Michael S. Engel d, AndreNel e, Dany Azar f, g, Andrew Ross h a Departament d'Estratigrafia, Paleontologia i Geociencies Marines, and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, Martí i Franques s/n, 08028 Barcelona, Spain b Museo Geominero, Instituto Geologico y Minero de Espana,~ Ríos Rosas 23, 28003 Madrid, Spain c Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain d Division of Entomology (Paleoentomology), Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive e Suite 140, University of Kansas, Lawrence, Kansas 66045, USA e Institut de Systematique, Evolution, Biodiversite, ISYEB e UMR 7205 e CNRS, MNHN, UPMC, EPHE, Museum national d'Histoire naturelle, Sorbonne Universites, 57 rue Cuvier, CP 50, Entomologie, 75005 Paris, France f Lebanese University, Faculty of Sciences II, Department of Natural Sciences, Fanar, Matn P.O. Box 26110217, Lebanon g Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China h Department of Natural Sciences, National Museums Scotland, Chambers St., Edinburgh EH1 1JF, UK article info abstract Article history: Diverse new material of mantises found in the Cretaceous amber-bearing deposits from Lebanon (Bar- Received 28 July 2015 remian), Spain (Albian), and Myanmar (AlbianeCenomanian) are described and figured. The Lebanese Received in revised form and Spanish forms are nymphs; while the one from Myanmar is an adult specimen.
    [Show full text]
  • Serphitid Wasps in Cretaceous Amber from New Jersey (Hymenoptera: Serphitidae)
    Insect Systematics & Evolution 42 (2011) 197–204 brill.nl/ise Serphitid wasps in Cretaceous amber from New Jersey (Hymenoptera: Serphitidae) Michael S. Engel a,b,* , David A. Grimaldi b and Jaime Ortega-Blanco c a Division of Entomology (Paleoentomology), Natural History Museum and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, KS 66049-2811, USA b Division of Invertebrate Zoology (Entomology), American Museum of Natural History, Central Park West at 79 th Street, New York, NY 10024-5192, USA c Departament d’Estratigrafi a, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona, Martí i Franqués s/n, 08028 Barcelona, Spain * Corresponding author, e-mail: [email protected] Published 1 July 2011 Abstract Species of the extinct, parasitoid wasp family Serphitidae (Proctotrupomorpha: Bipetiolarida: Serphitoidea), occurring in Cretaceous (Turonian) amber from New Jersey, are reviewed. Two species, both new, are described and fi gured as Serphites raritanensis Engel & Grimaldi sp.n. and S . navesinkae Engel & Grimaldi sp.n. Keywords Apocrita , Mesozoic , Serphites , Serphitoidea , taxonomy , amber , paleontology Introduction Wasps of the superfamily Serphitoidea comprise an extinct lineage preserved exclu- sively in amber and known from throughout the Cretaceous. Th e fi rst serphitid, Serphites paradoxus Brues, was described from two males in Late Cretaceous (Campanian) amber from Canada (Brues 1937 ). Th e family remained monospecifi c for the next four decades until Kozlov & Rasnitsyn ( 1979 ) documented several species in Late Cretaceous (Santonian) amber from Siberia. Th ese authors noted that the bipetiolate structure of the metasoma was shared with those species of the Mymarommatidae, for which they also described some Siberian amber species, and accordingly demoted mymaromma- tids to a subfamily within Serphitidae (as Serphitidae has priority) and considering them all as a single group within Proctotrupoidea.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]
  • Amber! Conrad C
    AMBER! CONRAD C. LABANDEIRA! Department of Paleobiology, National Museum of Natural History, Smithsonian Institution Washington, D.C. 20013 USA ˂[email protected]! ˃ and! Department of Entomology, University of Maryland, College Park, MD 20742 USA ABSTRACT.—The amber fossil record provides a distinctive, 320-million-year-old taphonomic mode documenting gymnosperm, and later, angiosperm, resin-producing taxa. Resins and their subfossil (copal) and fossilized (amber) equivalents are categorized into five classes of terpenoid, phenols, and other compounds, attributed to extant family-level taxa. Copious resin accumulations commencing during the early Cretaceous are explained by two hypotheses: 1) abundant resin production as a byproduct of plant secondary metabolism, and 2) induced and constitutive host defenses for warding off insect pest and pathogen attack through profuse resin production. Forestry research and fossil wood-boring damage support a causal relationship between resin production and pest attack. Five stages characterize taphonomic conversion of resin to amber: 1) Resin flows initially caused by biotic or abiotic plant-host trauma, then resin flowage results from sap pressure, resin viscosity, solar radiation, and fluctuating temperature; 2) entrapment of live and dead organisms, resulting in 3) entombment of organisms; then 4) movement of resin clumps to 5) a deposition site. This fivefold diagenetic process of amberization results in resin→copal→amber transformation from internal biological and chemical processes and external geological forces. Four phases characterize the amber record: a late Paleozoic Phase 1 begins resin production by cordaites and medullosans. A pre-mid-Cretaceous Mesozoic Phase 2 provides increased but still sparse accumulations of gymnosperm amber. Phase 3 begins in the mid-early Cretaceous with prolific amber accumulation likely caused by biotic effects of an associated fauna of sawflies, beetles, and pathogens.
    [Show full text]
  • Cretaceous Research Manuscript Draft
    Cretaceous Research Manuscript Draft Manuscript Number: YCRES-D-15-00178 Title: New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar Article Type: Full Length Article Keywords: Amber; Mantodea; New species; Phylogeny; Cretaceous Abstract: Diverse new material of mantises found in the Cretaceous amber-bearing deposits from Lebanon (Aptian), Spain (Albian), and Myanmar (Albian, but see Geological settings) are described and figured. The Lebanese and Spanish forms are nymphs; while the one from Myanmar is an adult specimen. The Lebanese nymph corresponds to a new specimen of Burmantis lebanensis Grimaldi, 2003 while the adult Burmese (Myanmar) specimen belongs to the new species Burmantis zherichini. The Spanish specimen represents a new genus and species and is established as Aragonimantis aenigma, but is considered family incertae sedis. The Spanish specimen is the first record of Mesozoic mantises from western-European amber deposits. A revised phylogenetic hypothesis for Cretaceous mantises is proposed. Highlights HIGHLIGHTS • New Middle Cretaceous mantises of Lebanon, Spain and Myanmar are studied. • Three species are described from the Aptian-Cenomanian interval. • Head and proleg structures are valuable to differentiate Cretaceous mantises. • A phylogenetic analysis of all Cretaceous mantises is presented. • Scarcity of fossil adults and diagnostic characters imply uncertain relationships within basal mantises. Manuscript Click here to view linked References New mantises (Insecta: Mantodea) in Cretaceous
    [Show full text]
  • Novitates Paleoentomologicae No
    Novitates Paleoentomologicae No. 13, pp. 1–22 30 December 2015 A new family of primitive serphitoid wasps in ȱȱǻ ¢DZȱǼ Michael S. Engel1,2 Abstract.ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǻDZȱ Ǽȱ ȱ ȱ ȱ ęȱȱArchaeoserphitidae Engel, new family. The family is based on Archaeoserphites melqartiȱǰȱ ȱȱȱǰȱȱȱ¢ȱȱȱȱǰȱ ȱȱ ȱȱȱ ȬǰȱȱǯȱȱArchaeoserphites have several ȱȱȱȱȱǻe.gǯǰȱȱǰȱȱȱ¢ȱDzȱ ȱȱȱȱĚDzȱȱȱȱǼǰȱ ȱ¢ȱ¡ȱȱ ȱȱȱǻe.gǯǰȱȱ ȱǰȱ ȱ¢ȱ DzȱȱDzȱ ȱDzȱȱǼǯȱȱȱȱȱ¢ȱȱȱȱ¡ȱȱȱȱ ǰȱȱȱ¢ȱMicroserphitinaeȱǰȱ ȱ¢ǰȱȱǯ ȱȱȱȱȱȱȱȱȱȱ ȱ ¢ȱ ȱ Ȧ¢ȱ ¢ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱǻ ȱǭȱǰȱŘŖŖśǼǯȱȱȱȱȱȱȱȬ ȱȱȱȱȱǰȱ¢ȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ǻe.gǯǰȱ ǰȱŗşŝřDzȱ ǰȱŗşŞŜDzȱȱǭȱ ǰȱŘŖŖŚǰȱŘŖŖŜǰȱŘŖŖŝǰȱŘŖŗřDzȱǰȱ ŘŖŖřǰȱŘŖŖśǰȱŘŖŖŜǰȱŘŖŖŞDzȱȱet alǯǰȱŘŖŗřǰȱŘŖŗřDzȱȱet alǯǰȱŘŖŖŝDzȱȱǭȱǰȱŘŖŖŞDzȱ ȱet alǯǰȱŘŖŖşDzȱȬȱet alǯǰȱŘŖŖşǰȱŘŖŗŗǰȱŘŖŗŗǰȱŘŖŗŚDzȱÛȱet alǯǰȱŘŖŗŖDzȱ 1ȱȱȱ¢ǰȱȱ ¢ȱǰȱȱȱȱ¢ȱǭȱȬ ¢ȱ¢ǰȱŗśŖŗȱȱȱȮȱȱŗŚŖǰȱ¢ȱȱ ǰȱ ǰȱ ȱŜŜŖŚśȬ ŚŚŗśǰȱȱǻȓǯǼǯ 2ȱȱȱ ȱ¢ǰȱȱȱȱȱ ¢ǰȱȱȱȱȱ ŝşthȱǰȱ ȱǰȱ ȱȱŗŖŖŘŚȬśŗşŘǰȱǯ DZȱĴDZȦȦ¡ǯǯȦŗŖǯŗŝŗŜŗȦǯŖŗřǯśŖŜŚ Copyright © M.S. Engel. ȱȱĴȬȬȱŚǯŖȱ ȱǻȱȬȬȱŚǯŖǼǯ ȱŘřŘşȬśŞŞŖ 2 Novitates Paleoentomologicae No. 13 McKellar & Engel, 2012; McKellar et al., 2013; Olmi et al., 2014). Nonetheless, there are a series of distinctive extinct families that are almost hallmarks of the Cretaceous, representing apparently monophyletic groups that did not persist into the Cenozoic and were perhaps dwindling long before the Mesozoic came to its climactic closure. Each can be assigned to a superfamily and associated with their modern cousins, and inform us of the early branching events within these groups and of putatively ground- plan features aiding phylogenetic studies through the
    [Show full text]
  • A Catalogue of Burmite Inclusions
    Zoological Systematics, 42(3): 249–379 (July 2017), DOI: 10.11865/zs.201715 ORIGINAL ARTICLE A catalogue of Burmite inclusions Mingxia Guo1, 2, Lida Xing3, 4, Bo Wang5, Weiwei Zhang6, Shuo Wang1, Aimin Shi2 *, Ming Bai1 * 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2Department of Life Science, China West Normal University, Nanchong, Sichuan 637002, China 3State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China 4School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China 5Nanjing Institute of Geology and Palaeonotology, Nanjing 21008, China 6Three Gorges Entomological Museum, P.O. Box 4680, Chongqing 400015, China *Corresponding authors, E-mails: [email protected], [email protected] Abstract Burmite (Burmese amber) from the Hukawng Valley in northern Myanmar is a remarkable valuable and obviously the most important amber for studying terrestrial diversity in the mid-Cretaceous. The diversity of Burmite inclusions is very high and many new taxa were found, including new order, new family/subfamily, and new genus. Till the end of 2016, 14 phyla, 21 classes, 65 orders, 279 families, 515 genera and 643 species of organisms are recorded, which are summized and complied in this catalogue. Among them, 587 species are arthropods. In addtion, the specimens which can not be identified into species are also listed in the paper. The information on type specimens, other materials, host and deposition of types are provided. Key words Burmese amber, fossil, Cretaceous, organism. 1 Introduction Burmite (Burmese amber) from the Hukawng Valley in northern Myanmar is a remarkable valuable and obviously the most important amber for studying terrestrial diversity in the mid-Cretaceous.
    [Show full text]