A Derivation of the Tonal Hierarchy from Basic Perceptual Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Derivation of the Tonal Hierarchy from Basic Perceptual Processes City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 10-2014 A Derivation of the Tonal Hierarchy from Basic Perceptual Processes David Smey Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/312 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] A DERIVATION OF THE TONAL HIERARCHY FROM BASIC PERCEPTUAL PROCESSES by David Smey A dissertation submitted to the Graduate Faculty in Music in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 ii © DAVID SMEY 2014 All rights reserved iii This manuscript has been read and accepted for the Graduate Faculty in Music in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy ________________ _______________________________ Date Stephen Blum Chair of Examining Committee ________________ _______________________________ Date Norman Carey Executive Officer Supervisory Committee Joseph N. Straus, advisor Philip Rupprecht, first reader Stephen Blum Fred Lerdahl THE CITY UNIVERSITY OF NEW YORK iv Abstract A DERIVATION OF THE TONAL HIERARCHY FROM BASIC PERCEPTUAL PROCESSES by David Smey Advisor: Professor Joseph N. Straus In recent decades music psychologists have explained the functioning of tonal music in terms of the tonal hierarchy, a stable schema of relative structural importance that helps us interpret the events in a passage of tonal music. This idea has been most influentially disseminated by Carol Krumhansl in her 1990 monograph Cognitive Foundations of Musical Pitch. Krumhansl hypothesized that this sense of the importance or centrality of certain tones of a key is learned through exposure to tonal music, in particular by learning the relative frequency of appearance of the various pitch classes in tonal passages. The correlation of pitch-class quantity and structural status has been the subject of a number of successful studies, leading to the general acceptance of the pitch-distributional account of tonal hierarchy in the field of music psychology. This study argues that the correlation of pitch-class quantity with structural status is a byproduct of other, more fundamental perceptual properties, all of which are derived from aspects of everyday listening. Individual chapters consider the phenomena of consonance and dissonance, intervallic rootedness, the short-term memory for pitch collection, and the interaction of temporal ordering and voice-leading that Jamshed Bharucha calls melodic anchoring. The study concludes with an elaborate self-experiment that observes the interaction of these v properties in a pool of 275 stimuli, each of which is constructed from a single dyad plus one subsequent tone. vi Acknowledgements This project is the result of a rather extended period of introspection and exploration, and I am grateful to the faculty of the CUNY Graduate Center for the generous patience, scholarly latitude and unflagging encouragement that allowed me to undertake such a journey. In particular I am deeply indebted to my advisors Philip Rupprecht and Joseph Straus, who have provided incisive feedback and moral support over the years. I would also like to express my gratitude for the many scholars who have done groundbreaking work in the area of music psychology and perceptually-oriented music theory over the last few decades – specific works by Albert Bregman, Christopher Hasty, David Huron, Ray Jackendoff, Carol Krumhansl, Fred Lerdahl, and David Lewin were particularly energizing and inspirational for me and I cannot imagine working in this field without these invaluable precedents. The influence of some of these figures on the current study will be rather obvious to an informed reader, and there are, of course, many other individuals who have contributed work that has proven essential to what follows. Finally I must thank my wonderful wife, Melissa Smey, for her love and support during this rather long and occasionally difficult process. I could not have completed this work without her, and I hope that it lays the foundation for a long and fruitful partnership in the field of music. vii Contents Abstract .............................................................................................................................. iv Acknowledgements ............................................................................................................ vi Multimedia and Computer Programs ................................................................................. ix List of Examples ................................................................................................................ x I. Introduction and Overview .............................................................................................. 1 General principles for a perceptual model of tonality ........................................... 2 Recent theories of the tonal hierarchy ................................................................... 5 Carol Krumhansl’s Cognitive Foundations of Musical Pitch .................... 7 Fred Lerdahl’s Tonal Pitch Space .............................................................. 17 Other suggestive precedents ...................................................................... 27 The overall approach .............................................................................................. 28 II. Vertical Relations, Part One: Consonance and Dissonance .......................................... 32 The overtone series ................................................................................................ 32 The overtone series and tonality – historical precedents ....................................... 34 Consonance and dissonance ................................................................................... 36 Is the triad the "most consonant" sonority? ........................................................... 44 Relative consonance as tonic-making .................................................................... 48 The problem of defining consonance ..................................................................... 49 III. Vertical Relations, Part Two: Intervallic Rootedness .................................................. 58 The residue pitch .................................................................................................... 59 A precedent: Hindemith’s Craft of Musical Composition ..................................... 63 First thesis: Applying Terhardt’s pitch-finding algorithm to rooted intervals ....... 65 Second thesis: Rootedness as "next-best" fit ......................................................... 69 Third thesis: Rootedness in pitch-class space ........................................................ 71 The acoustic root in context ................................................................................... 89 viii Non-tonic harmonies as a shift in perspective ....................................................... 95 The global significance of tonic tones ................................................................... 98 Can any sonority serve as the center of the tonal hierarchy? ................................. 100 IV. The Underlying Scale .................................................................................................. 102 Annabel Cohen's Well-Tempered Clavier experiment ........................................... 104 Pitch-location memory: The trace .......................................................................... 105 Scales consist of steps ............................................................................................ 113 The consecutive semitone constraint ..................................................................... 119 The "deep scale" property ...................................................................................... 122 The diatonic collection and consonance ................................................................ 124 Non-traditional scales and scalar perception: The Ondine experiment ................. 127 The scalar vs. chromatic distinction and musical experience ................................ 136 V. Simple Diachronic Relations ........................................................................................ 155 The hierarchical structure of a single tone ............................................................. 155 Two events ............................................................................................................. 160 Beginners’ advantage ............................................................................................. 163 Arpeggiations ......................................................................................................... 164 The power of voice leading and the finality effect ................................................ 167 VI. The Dyad Plus Monad Experiment .............................................................................. 176 Designing the experiment ...................................................................................... 181 Presenting the data ................................................................................................. 189 Findings..................................................................................................................
Recommended publications
  • A Psychological Approach to Musical Form: the Habituation–Fluency Theory of Repetition
    A Psychological Approach to Musical Form: The Habituation–Fluency Theory of Repetition David Huron With the possible exception of dance and meditation, there appears to be nothing else in common human experience that is comparable to music in its repetitiveness (Kivy 1993; Ockelford 2005; Margulis 2013). Narrative arti- facts like movies, novels, cartoon strips, stories, and speeches have much less internal repetition. Even poetry is less repetitive than music. Occasionally, architecture can approach music in repeating some elements, but only some- times. There appears to be no visual analog to the sort of trance–inducing music that can engage listeners for hours. Although dance and meditation may be more repetitive than music, dance is rarely performed in the absence of music, and meditation tellingly relies on imagining a repeated sound or mantra (Huron 2006: 267). Repetition can be observed in music from all over the world (Nettl 2005). In much music, a simple “strophic” pattern is evident in which a single phrase or passage is repeated over and over. When sung, it is common for successive repetitions to employ different words, as in the case of strophic verses. However, it is also common to hear the same words used with each repetition. In the Western art–music tradition, internal patterns of repetition are commonly discussed under the rubric of form. Writing in The Oxford Companion to Music, Percy Scholes characterized musical form as “a series of strategies designed to find a successful mean between the opposite extremes of unrelieved repetition and unrelieved alteration” (1977: 289). Scholes’s characterization notwithstanding, musical form entails much more than simply the pattern of repetition.
    [Show full text]
  • ICMPC11 Schedule at a Glan
    Upadted 7/9/10 SCHEDULE AT A GLANCE 8/23-27/10 MONDAY 8/23 REGISTRATION REGISTRATION - Kane Hall Lobby REGISTRATION - Kane Hall Lobby REGISTRATION - Kane Hall Lobby REGISTRATION - Kane Hall Lobby REGISTRATION - Kane Hall Lobby REGISTRATION - Kane Hall Lobby 8:00-9:00AM Kane 130 Kane 110 Gowen 301 Smith 120 KANE - Walker Ames Room Session Rooms Gowen 201 WELCOME/KEYNOTE ADDRESS: Welcome and Opening Singing: when it hurts, when it helps, Keynote 9-10:30AM and when it changes brains. Gottfried Schlaug BREAK: 10:30-11:00AM Break Break Break Break Break Break INVITED SYMPOSIUM: SESSION 1 Effects of Musical Experience on Development During MUSIC THERAPY 1 SOCIAL PSYCHOLOGY 1 TONAL PERCEPTION 1 11-12:30 Infancy Laurel Trainor PA 021 Modeling Musical Structure from the Audience: Emergent PA027 The Effect of Structure and Rate Variation on Key-Finding SYM31:Beat Induction as a Fundamental Musical Skill PA 025 A Theory of Music and Sadness: A Role for Prolactin? 11:00 Rhythmic Models from Spontaneous Vocalizations in Samba Culture Morwaread Farbood, Gary Marcus, Panayotis Mavromatis, David Henkjan Honing David Huron Luiz Naveda, Fabien Gouyon, Marc Leman Poeppel SYM32: New Perspectives on Consonance and Dissonance PA 018 Improvisational Psychodynamic Music Therapy for PA110 Influences of Minority Status and Social Identity on the PA057 Common and Rare Musical Keys Are Absolutely Different: 11:30 Judy Plantinga, Sandra E. Trehub Depression: Randomized Controlled Trial Elaboration of Unfamiliar Music by Adolescents Implicit Absolute Pitch, Exposure
    [Show full text]
  • Expectancy and Musical Emotion Effects of Pitch and Timing
    Manuscript Expectancy and musical emotion Effects of pitch and timing expectancy on musical emotion Sauvé, S. A.1, Sayed, A.1, Dean, R. T.2, Pearce, M. T.1 1Queen Mary, University of London 2Western Sydney University Author Note Correspondence can be addressed to Sarah Sauvé at [email protected] School of Electronic Engineering and Computer Science Queen Mary University of London, Mile End Road London E1 4NS United Kingdom +447733661107 Biographies S Sauve: Originally a pianist, Sarah is now a PhD candidate in the Electronic Engineering and Computer Science department at Queen Mary University of London studying expectancy and stream segregation, supported by a college studentship. EXPECTANCY AND MUSICAL EMOTION 2 A Sayed: Aminah completed her MSc in Computer Science at Queen Mary University of London, specializing in multimedia. R.T. Dean: Roger is a composer/improviser and researcher at the MARCS Institute for Brain, Behaviour and Development. His research focuses on music cognition and music computation, both analytic and generative. M.T. Pearce: Marcus is Senior Lecturer at Queen Mary University of London, director of the Music Cognition and EEG Labs and co-director of the Centre for Mind in Society. His research interests cover computational, psychological and neuroscientific aspects of music cognition, with a particular focus on dynamic, predictive processing of melodic, rhythmic and harmonic structure, and its impact on emotional and aesthetic experience. He is the author of the IDyOM model of auditory expectation based on statistical learning and probabilistic prediction. EXPECTANCY AND MUSICAL EMOTION 3 Abstract Pitch and timing information work hand in hand to create a coherent piece of music; but what happens when this information goes against the norm? Relationships between musical expectancy and emotional responses were investigated in a study conducted with 40 participants: 20 musicians and 20 non-musicians.
    [Show full text]
  • Cognitive Processes for Infering Tonic
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research, Creative Activity, and Performance - School of Music Music, School of 8-2011 Cognitive Processes for Infering Tonic Steven J. Kaup University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/musicstudent Part of the Cognition and Perception Commons, Music Practice Commons, Music Theory Commons, and the Other Music Commons Kaup, Steven J., "Cognitive Processes for Infering Tonic" (2011). Student Research, Creative Activity, and Performance - School of Music. 46. https://digitalcommons.unl.edu/musicstudent/46 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research, Creative Activity, and Performance - School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. COGNITIVE PROCESSES FOR INFERRING TONIC by Steven J. Kaup A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Music Major: Music Under the Supervision of Professor Stanley V. Kleppinger Lincoln, Nebraska August, 2011 COGNITIVE PROCESSES FOR INFERRING TONIC Steven J. Kaup, M. M. University of Nebraska, 2011 Advisor: Stanley V. Kleppinger Research concerning cognitive processes for tonic inference is diverse involving approaches from several different perspectives. Outwardly, the ability to infer tonic seems fundamentally simple; yet it cannot be attributed to any single cognitive process, but is multi-faceted, engaging complex elements of the brain. This study will examine past research concerning tonic inference in light of current findings.
    [Show full text]
  • Perceptual Interactions of Pitch and Timbre: an Experimental Study on Pitch-Interval Recognition with Analytical Applications
    Perceptual interactions of pitch and timbre: An experimental study on pitch-interval recognition with analytical applications SARAH GATES Music Theory Area Department of Music Research Schulich School of Music McGill University Montréal • Quebec • Canada August 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Arts. Copyright © 2015 • Sarah Gates Contents List of Figures v List of Tables vi List of Examples vii Abstract ix Résumé xi Acknowledgements xiii Author Contributions xiv Introduction 1 Pitch, Timbre and their Interaction • Klangfarbenmelodie • Goals of the Current Project 1 Literature Review 7 Pitch-Timbre Interactions • Unanswered Questions • Resulting Goals and Hypotheses • Pitch-Interval Recognition 2 Experimental Investigation 19 2.1 Aims and Hypotheses of Current Experiment 19 2.2 Experiment 1: Timbre Selection on the Basis of Dissimilarity 20 A. Rationale 20 B. Methods 21 Participants • Stimuli • Apparatus • Procedure C. Results 23 2.3 Experiment 2: Interval Identification 26 A. Rationale 26 i B. Method 26 Participants • Stimuli • Apparatus • Procedure • Evaluation of Trials • Speech Errors and Evaluation Method C. Results 37 Accuracy • Response Time D. Discussion 51 2.4 Conclusions and Future Directions 55 3 Theoretical Investigation 58 3.1 Introduction 58 3.2 Auditory Scene Analysis 59 3.3 Carter Duets and Klangfarbenmelodie 62 Esprit Rude/Esprit Doux • Carter and Klangfarbenmelodie: Examples with Timbral Dissimilarity • Conclusions about Carter 3.4 Webern and Klangfarbenmelodie in Quartet op. 22 and Concerto op 24 83 Quartet op. 22 • Klangfarbenmelodie in Webern’s Concerto op. 24, mvt II: Timbre’s effect on Motivic and Formal Boundaries 3.5 Closing Remarks 110 4 Conclusions and Future Directions 112 Appendix 117 A.1,3,5,7,9,11,13 Confusion Matrices for each Timbre Pair A.2,4,6,8,10,12,14 Confusion Matrices by Direction for each Timbre Pair B.1 Response Times for Unisons by Timbre Pair References 122 ii List of Figures Fig.
    [Show full text]
  • Unified Music Theories for General Equal-Temperament Systems
    Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories.
    [Show full text]
  • A New Illusion in the Perception of Relative Pitch Intervals
    A new illusion in the perception of relative pitch intervals by Maartje Koning A thesis submitted to the Faculty of Humanities of the University of Amsterdam in partial fulfilment of the requirements for the degree of Master of Arts Department of Musicology 2015 Dr. M. Sadakata University of Amsterdam Dr. J.A. Burgoyne University of Amsterdam 2 Abstract This study is about the perception of relative pitch intervals. An earlier study of Sadakata & Ohgushi ‘Comparative judgments pitch intervals and an illusion’ (2000) showed that when when people listened to two tone intervals, their perception of relative pitch distance between the two tones depended on the direction and size of the intervals. In this follow-up study the participants had to listen to two tone intervals and indicate whether the size of the second interval was smaller, the same or larger than the first. The conditions were the same as in the study of Sadakata & Ohgushi. These four different conditions were illustrating the relationship between those two intervals. There were ascending and descending intervals and the starting tone of the second interval differed with respect to the starting tone of the first interval. The study made use of small and large intervals and hypothesized that the starting tone of the second interval with respect to the starting tone of the first interval had an effect on the melodic expectancy of the listener and because of that they over- or underestimate the size of the second tone interval. Furthermore, it was predicted that this tendency would be stronger for larger tone intervals compared to smaller tone intervals and that there would be no difference found between musicians and non-musicians.
    [Show full text]
  • A Theory of Spatial Acquisition in Twelve-Tone Serial Music
    A Theory of Spatial Acquisition in Twelve-Tone Serial Music Ph.D. Dissertation submitted to the University of Cincinnati College-Conservatory of Music in partial fulfillment of the requirements for the degree of Ph.D. in Music Theory by Michael Kelly 1615 Elkton Pl. Cincinnati, OH 45224 [email protected] B.M. in Music Education, the University of Cincinnati College-Conservatory of Music B.M. in Composition, the University of Cincinnati College-Conservatory of Music M.M. in Music Theory, the University of Cincinnati College-Conservatory of Music Committee: Dr. Miguel Roig-Francoli, Dr. David Carson Berry, Dr. Steven Cahn Abstract This study introduces the concept of spatial acquisition and demonstrates its applicability to the analysis of twelve-tone music. This concept was inspired by Krzysztof Penderecki’s dis- tinctly spatial approach to twelve-tone composition in his Passion According to St. Luke. In the most basic terms, the theory of spatial acquisition is based on an understanding of the cycle of twelve pitch classes as contiguous units rather than discrete points. Utilizing this theory, one can track the gradual acquisition of pitch-class space by a twelve-tone row as each of its member pitch classes appears in succession, noting the patterns that the pitch classes exhibit in the pro- cess in terms of directionality, the creation and filling in of gaps, and the like. The first part of this study is an explanation of spatial acquisition theory, while the se- cond part comprises analyses covering portions of seven varied twelve-tone works. The result of these analyses is a deeper understanding of each twelve-tone row’s composition and how each row’s spatial characteristics are manifested on the musical surface.
    [Show full text]
  • Ninth, Eleventh and Thirteenth Chords Ninth, Eleventh and Thirteen Chords Sometimes Referred to As Chords with 'Extensions', I.E
    Ninth, Eleventh and Thirteenth chords Ninth, Eleventh and Thirteen chords sometimes referred to as chords with 'extensions', i.e. extending the seventh chord to include tones that are stacking the interval of a third above the basic chord tones. These chords with upper extensions occur mostly on the V chord. The ninth chord is sometimes viewed as superimposing the vii7 chord on top of the V7 chord. The combination of the two chord creates a ninth chord. In major keys the ninth of the dominant ninth chord is a whole step above the root (plus octaves) w w w w w & c w w w C major: V7 vii7 V9 G7 Bm7b5 G9 ? c ∑ ∑ ∑ In the minor keys the ninth of the dominant ninth chord is a half step above the root (plus octaves). In chord symbols it is referred to as a b9, i.e. E7b9. The 'flat' terminology is use to indicate that the ninth is lowered compared to the major key version of the dominant ninth chord. Note that in many keys, the ninth is not literally a flatted note but might be a natural. 4 w w w & #w #w #w A minor: V7 vii7 V9 E7 G#dim7 E7b9 ? ∑ ∑ ∑ The dominant ninth usually resolves to I and the ninth often resolves down in parallel motion with the seventh of the chord. 7 ˙ ˙ ˙ ˙ & ˙ ˙ #˙ ˙ C major: V9 I A minor: V9 i G9 C E7b9 Am ˙ ˙ ˙ ˙ ˙ ? ˙ ˙ The dominant ninth chord is often used in a II-V-I chord progression where the II chord˙ and the I chord are both seventh chords and the V chord is a incomplete ninth with the fifth omitted.
    [Show full text]
  • The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration Michele Goodwin University of California, Irvine
    Cornell Law Review Volume 104 Article 4 Issue 4 May 2019 The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration Michele Goodwin University of California, Irvine Follow this and additional works at: https://scholarship.law.cornell.edu/clr Part of the Constitutional Law Commons Recommended Citation Michele Goodwin, The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration, 104 Cornell L. Rev. 899 (2019) Available at: https://scholarship.law.cornell.edu/clr/vol104/iss4/4 This Article is brought to you for free and open access by the Journals at Scholarship@Cornell Law: A Digital Repository. It has been accepted for inclusion in Cornell Law Review by an authorized editor of Scholarship@Cornell Law: A Digital Repository. For more information, please contact [email protected]. THE THIRTEENTH AMENDMENT: MODERN SLAVERY, CAPITALISM, AND MASS INCARCERATION Michele Goodwint INTRODUCTION ........................................ 900 I. A PRODIGIOUS CYCLE: PRESERVING THE PAST THROUGH THE PRESENT ................................... 909 II. PRESERVATION THROUGH TRANSFORMATION: POLICING, SLAVERY, AND EMANCIPATION........................ 922 A. Conditioned Abolition ....................... 923 B. The Punishment Clause: Slavery's Preservation Through Transformation..................... 928 C. Re-appropriation and Transformation of Black Labor Through Black Codes, Crop Liens, Lifetime Labor, Debt Peonage, and Jim Crow.. 933 1. Black Codes .......................... 935 2. Convict Leasing ........................ 941
    [Show full text]
  • Fourier Phase and Pitch-Class Sum
    Fourier Phase and Pitch-Class Sum Dmitri Tymoczko1 and Jason Yust2(B) Author Proof 1 Princeton University, Princeton, NJ 08544, USA [email protected] 2 Boston University, Boston, MA 02215, USA [email protected] AQ1 Abstract. Music theorists have proposed two very different geometric models of musical objects, one based on voice leading and the other based on the Fourier transform. On the surface these models are completely different, but they converge in special cases, including many geometries that are of particular analytical interest. Keywords: Voice leading Fourier transform Tonal harmony Musical scales Chord geometry· · · · 1Introduction Early twenty-first century music theory explored a two-pronged generalization of traditional set theory. One prong situated sets and set-classes in continuous, non-Euclidean spaces whose paths represented voice leadings, or ways of mov- ing notes from one chord to another [4,13,16]. This endowed set theory with a contrapuntal aspect it had previously lacked, embedding its discrete entities in arobustlygeometricalcontext.AnotherpronginvolvedtheFouriertransform as applied to pitch-class distributions: this provided alternative coordinates for describing chords and set classes, coordinates that made manifest their harmonic content [1,3,8,10,19–21]. Harmonies could now be described in terms of their resemblance to various equal divisions of the octave, paradigmatic objects such as the augmented triad or diminished seventh chord. These coordinates also had a geometrical aspect, similar to yet distinct from voice-leading geometry. In this paper, we describe a new convergence between these two approaches. Specifically, we show that there exists a class of simple circular voice-leading spaces corresponding, in the case of n-note nearly even chords, to the nth Fourier “phase spaces.” An isomorphism of points exists for all chords regardless of struc- ture; when chords divide the octave evenly, we can extend the isomorphism to paths, which can then be interpreted as voice leadings.
    [Show full text]
  • Cognition, Constraints and Conceptual Blends in Modernist Music the Pleasure of Modernism: Intention, Meaning, and the Compositional Avant-Garde, Ed
    “Tone-color, movement, changing harmonic planes”: Cognition, Constraints and Conceptual Blends in Modernist Music The Pleasure of Modernism: Intention, Meaning, and the Compositional Avant-Garde, ed. Arved Ashby (Rochester: University of Rochester Press, 2004), 121–152. Amy Bauer I. Ligeti and the “Listenability” of Modernist Music György Ligeti has discussed his "micropolyphonic" music of the mid-1960s at some length, in an attempt to explain why its composed structure seems to bear no relation to its actual sound. Although works such as Lontano are based on strict canons, their compositional method assumes a listener will 'mishear' its structure: [In the large orchestral work Lontano] I composed . an extensively branching and yet strictly refined polyphony which, however, veers suddenly into something else. I don’t have a name for it and I don’t want to create a term for it. A kind of complex of tone-color, movement, changing harmonic planes. The polyphonic structure does not actually come through, you cannot hear it; it remains hidden in a microscopic underwater world, to us inaudible. I have retained melodic lines in the process of composition, they are governed by rules as strict as Palestrina's or those of the Flemish school, but the rules of polyphony are worked out by me. the polyphony is dissolved, like the harmony and the tone-color – to such an extent that it does not manifest itself, and yet it is there, just beneath the threshold.1 In the above passages, Ligeti appears to ally himself with modernists such as Boulez and Babbit, composers who use twelve-tone and other methods to systematically organize pitch structure.
    [Show full text]