Carcinoid Tumour of the Thymus Gland: Report of a Case

Total Page:16

File Type:pdf, Size:1020Kb

Carcinoid Tumour of the Thymus Gland: Report of a Case Thorax: first published as 10.1136/thx.30.4.470 on 1 August 1975. Downloaded from Thorax (1975), 30, 470. Carcinoid tumour of the thymus gland: report of a case J. PRESTON HUGHES', NELSON ANCALMO', GEORGE L. LEONARD2, and JOHN L. OCHSNER' Departments of Surgery1 and Pathology2, Alton Ochsner Medical Foundation, New Orleans, Louisiana, USA Preston Hughes, J., Ancalmo, N., Leonard, G. L., and Ochsner, J. L. (1975). Thorax, 30, 470-475. Carcinoid tumour of the thymus gland: report of a case. Carcinoid of the thymus is a rare problem. A case is reported to add to only 16 previously reported. None of these 17 patients had the carcinoid syndrome. Complete surgical excision, if possible, is the treatment of choice. A primary carcinoid tumour of the thymus is and a large anterior mediastinal tumour was re- very rare. Rosai and Higa (1972) collected eight sected through a median sternotomy. The involved cases and found only eight additional cases in the pericardium and left phrenic nerve were excised literature. A patient with this unusual lesion was with the large discrete mass. Grossly, the tumour treated at Ochsner Foundation Hospital and the measured 12X9X7 cm and weighed 290 g (Fig. case report is presented, emphasizing the import- 3). It was well-circumscribed, oval, and apparentlycopyright. ance of complete excision. encapsulated; the cut surface was homogeneous, smooth, firm, grey-white, and fleshy. Micro- CASE REPORT scopically the tumour was composed of small, A 32-year-old white man visited the emergency closely packed cells with nuclei that were uniform in http://thorax.bmj.com/ room on 16 February 1974, because of severe size and shape with few mitotic figures (Figs upper back and chest pain. The constant aching 4-6). The cytoplasm of the cells was diffusely pain radiated anteriorly and down both arms; it eosinophilic in most areas and vacuolated in was relieved the shoulders but not others. No specific granules could be visualized. by moving by The ferric ferricyanide reduction technique to analgesics. He had had variable, recurrent chest demonstrate and back pain for one year but no history of argentaffin granules was negative. sweats, flushing, or diarrhoea. The cells were arranged in solid nests and The physical examination revealed no abnor- trabeculae, with areas of tubular or acinar forma- mality. Chest radiographs illustrated a large tion and other areas with the anastomosing ribbon- like on September 25, 2021 by guest. Protected anterior mediastinal chest mass that protruded growth pattern characteristic of carcinoid into the left side of the chest (Figs. 1 and 2). tumours. Abundant normal appearing thymic Laboratory studies were within normal limits tissue was found in the adipose tissue surrounding except for mild elevated blood sugar. After intra- an incomplete, irregular, fibrous tissue capsule. venous injection of 5 mCi 99m technetium per- Postoperatively paradoxical movement of the technetate, an image of the thyroid gland was diaphragm was not a problem. Four days post- obtained using a stationary imaging device. The operatively 400 ml of bloody pleural fluid was thyroid was normal with no substernal or media- removed by thoracentesis. The patient was dis- stinal extensions. An arch aortogram illustrated charged one week postoperatively. no compression from the lesion and no vascular He was last seen on 22 July 1974, with no abnormalities. Some of the blood supply to the complaints. The chest radiograph was normal. tumour originated from small left internal mammary artery branches. Pulmonary function DISCUSSION studies were normal. The term carcinoid tumour was introduced by On 21 February the patient was operated on Oberndorfer (1907) to designate a tumour which 470 Thorax: first published as 10.1136/thx.30.4.470 on 1 August 1975. Downloaded from Carcinoid tumour of the thymus gland: report of a case 471 FIG. 1. Posteroanterior chest film illustrating the large size of the mediastinal tumour above the aortic arch. copyright. I http://thorax.bmj.com/ on September 25, 2021 by guest. Protected v t~~~~~~~~~~~~~~~~~~~~~~~~~~"'- .g ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... FIG. 2. Lateral film showing the anterior mediastinal location of the carcinoid tumour of the thymus gland. Thorax: first published as 10.1136/thx.30.4.470 on 1 August 1975. Downloaded from 472 J. Preston Hughes, N. Ancalmo, G. L. Leonard, and J. L. Ochsner 6 1..3.4.2 O 1 2 3 4? 5 t FIG. 3. Gross appearance of the tumour. Firm, grey-white areas alternate with areas of red-brown discoloration and one region of central necrosis. copyright. http://thorax.bmj.com/ on September 25, 2021 by guest. Protected Thorax: first published as 10.1136/thx.30.4.470 on 1 August 1975. Downloaded from Carcinoid tumour of the thymus gland: report of a case 473 ^*~~~~~~~~~~~~% _4itt.' sss * copyright. http://thorax.bmj.com/ on September 25, 2021 by guest. Protected with abundant eosinophilic or vacuolated Thorax: first published as 10.1136/thx.30.4.470 on 1 August 1975. Downloaded from 474 J. Preston Hughes, N. Ancalmo, G. L. Leonard, and J. L. Ochsner resembled an undifferentiated carcinoma histolo- affecting valves of the right side of the heart. The gically but behaved in a benign fashion. When syndrome is thought to be due to the secretion of Pearson and Fitzgerald (1949) reported a series of 5-hydroxytryptamine (serotonin) by the tumour metastasizing carcinoid tumours, the malignant cells (Gabrilove et al., 1969). The excess 5- potential was recognized. hydroxytryptamine excreted by the tumour cells Carcinoid tumours arise from argentaffin cells, is oxidized in the liver and lungs by the enzyme originally described by Kultschitzky (1897) and amine oxidase; with the formation of 5-hydroxy- often termed Kultschitsky cells. These cells, ac- indoleacetic acid (5-HIAA) which is excreted in cording to Bensch et al. (1968), 'are present in all the urine. The estimation of urinary 5-HIAA is structures derived from the primitive entodermal used as a diagnostic test for the detection of car- canal and include the derivatives of the pharyngeal cinoid tumours. arches, the tracheobronchial tree, the gastro- None of the 16 patients previously reported with intestinal canal, the pancreatic duct and the bile carcinoid of the thymus had the carcinoid syn- ducts'. Argentaffin granules also have been drome, nor did our patient. No sweats, flushes, demonstrated in the thymus of some animals, and rashes, palpitation, diarrhoea, bronchospasm, nor normal human thymus has some argyrophilic cells paresthesias were reported in these patients. An (Rosai and Higa, 1972). Kultschitsky cells are explanation for this could be that most of the neuroendocrine cells shown by electron micro- endocrine products are metabolized in the lungs scopy to contain neurosecretory granules reported before they reach the systemic circulation due to to resemble alpha cells of the pancreas (Macadam an abnormal blood supply to these tumours. Nor- and Vetters, 1969). mally, the thymic veins drain into the brachio- The tumours which arise from these cells, called cephalic and thyroid veins. argentaffinomas or carcinoid tumours, are found With thymic carcinoid, the tumour may displace infrequently. In MacDonald's (1956) study car- all thymic tissue. The pattern of growth (Fig. 4) is cinoids were found at necropsy in 102 (04%) of in completely divided lobules of fibrous trabeculae. 26 401 subjects examined and were found in 254 Large round to oval 'balls' and areas of centralcopyright. (006%) of 418 166 surgical specimens. The most necrosis with calcification can be present. Normal common site of the lesion is in the intestinal tract, thymus may be near the capsule, but it may also especially the appendix and terminal ileum, and be seen in the mass. also in the rectum, colon, stomach, duodenum, The differential diagnoses of mediastinal and Meckel's diverticulum (Postlethwait, 1966). tumour's must include ectopic parathyroid tumour, http://thorax.bmj.com/ They have also been reported in the gallbladder chemodectoma, bronchial adenoma, thymoma, (Shiffman and Juler, 1964), ovaries (Gabrilove, neurogenic tumour, neurofibroma, teratodermoid Nicolis, and Kirschner, 1969), lungs (Steel, Baerg, tumour (teratoma), cyst (pericardial or broncho- and Adams, 1967), pancreas (Peart et al., 1963), genic), lymphoma (Hodgkin's), intrathoracic parotid gland (Rosai and Higa, 1972), testis (Rosai goitre, mesenchymal tumour (fibrosarcoma), and Higa, 1972), bronchus (Gabrilove et al., 1969), vascular tumour (capillary haemangioma), semi- thymus gland (Gabrilove et al., 1969), and in areas noma (Oldham, 1971), aortic aneurysm, pseudo- where ectopic gastric or intestinal epithelium is coarctation, hiatal hernia, and metastatic cancer. known to occur, such as in teratomas. The clinical symptoms of a mediastinal tumour on September 25, 2021 by guest. Protected Many carcinoid tumours are small, less than are chest pain, dyspnoea, cough, shortness of 2 cm in greatest dimension. Typically, they are breath, dysphagia, pneumonia, hoarseness, and well-circumscribed, homogeneous, and yellow to upper respiratory tract infections (Heimburger, grey-white in appearance. Microscopically the Battersby, and Vellios, 1963; Oldham, 1971). All tumour is composed of epithelial cells, which have of these are not specific for the presence of a small uniform nuclei, associated with acidophilic mediastinal tumour. The pain may be excruciating or vacuolated cytoplasm. The growth pattern of and radiate to the back and arms, as it did in our
Recommended publications
  • Endocrine Tumors of the Pancreas
    Friday, November 4, 2005 8:30 - 10:30 a. m. Pancreatic Tumors, Session 2 Chairman: R. Jensen, Bethesda, MD, USA 9:00 - 9:30 a. m. Working Group Session Pathology and Genetics Group leaders: J.–Y. Scoazec, Lyon, France Questions to be answered: 12 Medicine and Clinical Pathology Group leader: K. Öberg, Uppsala, Sweden Questions to be answered: 17 Surgery Group leader: B. Niederle, Vienna, Austria Questions to be answered: 11 Imaging Group leaders: S. Pauwels, Brussels, Belgium; D.J. Kwekkeboom, Rotterdam, The Netherlands Questions to be answered: 4 Color Codes Pathology and Genetics Medicine and Clinical Pathology Surgery Imaging ENETS Guidelines Neuroendocrinology 2004;80:394–424 Endocrine Tumors of the Pancreas - gastrinoma Epidemiology The incidence of clinically detected tumours has been reported to be 4-12 per million inhabitants, which is much lower than what is reported from autopsy series (about 1%) (5,13). Clinicopathological staging (12, 14, 15) Well-differentiated tumours are the large majority of which the two largest fractions are insulinomas (about 40% of cases) and non-functioning tumours (30-35%). When confined to the pancreas, non-angioinvasive, <2 cm in size, with <2 mitoses per 10 high power field (HPF) and <2% Ki-67 proliferation index are classified as of benign behaviour (WHO group 1) and, with the notable exception of insulinomas, are non-functioning. Tumours confined to the pancreas but > 2 cm in size, with angioinvasion and /or perineural space invasion, or >2mitoses >2cm in size, >2 mitoses per 20 HPF or >2% Ki-67 proliferation index, either non-functioning or functioning (gastrinoma, insulinoma, glucagonoma, somastatinoma or with ectopic syndromes, such as Cushing’s syndrome (ectopic ACTH syndrome), hypercaliemia (PTHrpoma) or acromegaly (GHRHoma)) still belong to the (WHO group 1) but are classified as tumours with uncertain behaviour.
    [Show full text]
  • Rare APC Promoter 1B Variants in Gastric Cancer Kindreds Unselected
    PostScript with familial adenomatous polyposis.3 However, the prevalence of APC promoter Gut: first published as 10.1136/gutjnl-2020-321990 on 7 September 2020. Downloaded from variants in molecularly undiagnosed GC kindreds unselected for fundic gland polyp- osis is unknown. To investigate the contribution of APC promoter variants to GC predisposition in families lacking causal germline vari- ants CDH1, which account for 19%–40% of HDGC, we performed multigene sequencing in 259 individuals from 254 families ascertained on the basis of personal and/or family history of GC (table 1). This included 174 individuals meeting Inter- national Gastric Cancer Linkage Consor- tium criteria for HDGC and one meeting criteria for FIGC.4 The majority (76.8%) of individuals had a personal history of GC, with 85.4% diffuse GC and median age of diagnosis of 42 years (range 9–87). Six additional individuals were potential obli- gate carriers for GC predisposition. The APC promoter 1B was analysed by next- Rare APC promoter 1B variants generation sequencing (n=232) or Sanger in gastric cancer kindreds sequencing (n=27) in all index cases. unselected for fundic We identified a pathogenic variant (APC gland polyposis c.-191T>C) in an obligate carrier meeting clinical criteria for HDGC (figure 1). The index case (III-8) was diagnosed with pros- Although multiple demographic, environ- tate cancer at the age of 73, following mental and genetic factors contribute to a diagnosis of GC in two children. IV-2 gastric cancer (GC) risk, familial clustering initially presented with lower abdominal occurs in around 10%–15% of cases.1 pain, distension and ascites at 37 years A strong genetic predisposition under- of age.
    [Show full text]
  • C O N F E R E N C E 7 18 October 2017
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2017-2018 C o n f e r e n c e 7 18 October 2017 CASE I: F1753191 (JPC 4101076). veterinarian revealed a regenerative anemia, stress leukogram and hypoproteinemia Signalment: 9-year-old, female intact, Rock characterized by hypoalbuminemia and the Alpine goat, Capra aegagrus hircus, goat was treated with ivermectin. caprine. Bloodwork at CSU revealed hyperglycemia and elevated creatinine, creatine kinase and History: A 9-year-old, female intact Rock aspartate aminotransferase levels. A fecal Alpine goat presented to Colorado State floatation revealed heavy loads of coccidia, University Veterinary Teaching Hospital strongyles and Trichuris spp. During a nine two months prior to necropsy with a three- day hospitalization, the doe was treated with day history of hyporexia and lethargy which intravenous fluids, kaopectate, thiamine, had progressed to lateral recumbency and fenbendazole, sulfadimethoxine, oxy- complete anorexia. The referring tetracycline and multiple blood transfusions. veterinarian had previously diagnosed the After significant improvement of her clinical doe with louse infestation, endoparasites and signs and bloodwork, including partial a heart murmur. Bloodwork by the referring resolution of the dermatitis, the doe was Haired skin goat. The skin was dry, alopecia, and covered with hyperkeratotic crusts and ulcers. (Photo courtesy of: Colorado State University, Microbiology, Immunology, and Pathology Department, College of Veterinary Medicine and Biomedical Sciences, http://csucvmbs.colostate.edu/academics/mip/Pages/default.aspx) 1 discharged. exfoliating epithelial crusts which were often tangled within scant remaining hairs. Two months later, the goat presented with a This lesion most severely affected the skin one month history of progressive scaling and over the epaxials, the ventral abdomen and ulceration over the withers, dew claws, and teats, coronary bands and dew claws.
    [Show full text]
  • The Future: Surgical Advances in MEN1 Therapeutic Approaches And
    2410 S M Sadowski et al. Advances in surgical 24:10 T243–T260 Thematic Review management of MEN1 The future: surgical advances in MEN1 therapeutic approaches and management strategies S M Sadowski1, G Cadiot2, E Dansin3, P Goudet4 and F Triponez1 1Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland 2Gastroenterology and Hepatology, University Hospital of Reims, Reims, France 3 Oncology, Oscar Lambret Cancer Center, University of Lille, Lille, France Correspondence 4 Endocrine Surgery, University Hospital of Dijon, and INSERM, U866, Epidemiology and Clinical Research in Digestive should be addressed Oncology Team, and INSERM, CIC1432, Clinical Epidemiology Unit, University Hospital of Dijon, Clinical Investigation to F Triponez Centre, Clinical Epidemiology/Clinical Trials Unit, Dijon, France Email [email protected] Abstract Multiple endocrine neoplasia type 1 (MEN1) is a hereditary autosomal dominant Key Words disorder associated with numerous neuroendocrine tumors (NETs). Recent advances in f multiple endocrine the management of MEN1 have led to a decrease in mortality due to excess hormones; neoplasia type 1 (MEN1) however, they have also led to an increase in mortality from malignancy, particularly f neuro-endocrine tumors (NET) NETs. The main challenges are to localize these tumors, to select those that need f thymic NET therapy because of the risk of aggressive behavior and to select the appropriate therapy f pancreatico-gastro-intestinal associated with minimal morbidity. This must be applied to a hereditary disease with a NET Endocrine-Related Cancer Endocrine-Related high risk of recurrence. The overall aim of management in MEN1 is to ensure that the f lung NET patient remains disease- and symptom-free for as long as possible and maintains a good quality of life.
    [Show full text]
  • Ovarian Carcinomas, Including Secondary Tumors: Diagnostically Challenging Areas
    Modern Pathology (2005) 18, S99–S111 & 2005 USCAP, Inc All rights reserved 0893-3952/05 $30.00 www.modernpathology.org Ovarian carcinomas, including secondary tumors: diagnostically challenging areas Jaime Prat Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Spain The differential diagnosis of ovarian carcinomas, including secondary tumors, remains a challenging task. Mucinous carcinomas of the ovary are rare and can be easily confused with metastatic mucinous carcinomas that may present clinically as a primary ovarian tumor. Most of these originate in the gastrointestinal tract and pancreas. International Federation of Gynecology and Obstetrics (FIGO) stage is the single most important prognostic factor, and stage I carcinomas have an excellent prognosis; FIGO stage is largely related to the histologic features of the ovarian tumors. Infiltrative stromal invasion proved to be biologically more aggressive than expansile invasion. Metastatic colon cancer is frequent and often simulates ovarian endometrioid adenocarcinoma. Although immunostains for cytokeratins 7 and 20 can be helpful in the differential diagnosis, they should always be interpreted in the light of all clinical information. Occasionally, endometrioid carcinomas may exhibit a microglandular pattern simulating sex cord-stromal tumors. However, typical endometrioid glands, squamous differentiation, or an adenofibroma component are each present in 75% of these tumors whereas immunostains for calretinin and alpha-inhibin are negative. Endometrioid carcinoma of the ovary is associated in 15–20% of the cases with carcinoma of the endometrium. Most of these tumors have a favorable outcome and they most likely represent independent primary carcinomas arising as a result of a Mu¨ llerian field effect.
    [Show full text]
  • What Is a Gastrointestinal Carcinoid Tumor?
    cancer.org | 1.800.227.2345 About Gastrointestinal Carcinoid Tumors Overview and Types If you have been diagnosed with a gastrointestinal carcinoid tumor or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is a Gastrointestinal Carcinoid Tumor? Research and Statistics See the latest estimates for new cases of gastrointestinal carcinoid tumor in the US and what research is currently being done. ● Key Statistics About Gastrointestinal Carcinoid Tumors ● What’s New in Gastrointestinal Carcinoid Tumor Research? What Is a Gastrointestinal Carcinoid Tumor? Gastrointestinal carcinoid tumors are a type of cancer that forms in the lining of the gastrointestinal (GI) tract. Cancer starts when cells begin to grow out of control. To learn more about what cancer is and how it can grow and spread, see What Is Cancer?1 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 To understand gastrointestinal carcinoid tumors, it helps to know about the gastrointestinal system, as well as the neuroendocrine system. The gastrointestinal system The gastrointestinal (GI) system, also known as the digestive system, processes food for energy and rids the body of solid waste. After food is chewed and swallowed, it enters the esophagus. This tube carries food through the neck and chest to the stomach. The esophagus joins the stomachjust beneath the diaphragm (the breathing muscle under the lungs). The stomach is a sac that holds food and begins the digestive process by secreting gastric juice. The food and gastric juices are mixed into a thick fluid, which then empties into the small intestine.
    [Show full text]
  • Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash Aga Khan University, [email protected]
    eCommons@AKU Section of Gastroenterology Department of Medicine March 2016 Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash Aga Khan University, [email protected] Adil Ayub Buria Naeem Sehrish Najam Zubair Ahmed Aga Khan University See next page for additional authors Follow this and additional works at: https://ecommons.aku.edu/ pakistan_fhs_mc_med_gastroenterol Part of the Gastroenterology Commons Recommended Citation Parkash, O., Ayub, A., Naeem, B., Najam, S., Ahmed, Z., Jafri, W., Hamid, S. (2016). Primary Hepatic Carcinoid Tumor with Poor Outcome. Journal of the College of Physicians and Surgeons Pakistan, 26(3), 227-229. Available at: https://ecommons.aku.edu/pakistan_fhs_mc_med_gastroenterol/220 Authors Om Parkash, Adil Ayub, Buria Naeem, Sehrish Najam, Zubair Ahmed, Wasim Jafri, and Saeed Hamid This report is available at eCommons@AKU: https://ecommons.aku.edu/pakistan_fhs_mc_med_gastroenterol/220 CASE REPORT Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash1, Adil Ayub2, Buria Naeem2, Sehrish Najam2, Zubair Ahmed, Wasim Jafri1 and Saeed Hamid1 ABSTRACT Primary Hepatic Carcinoid Tumor (PHCT) represents an extremely rare clinical entity with only a few cases reported to date. These tumors are rarely associated with metastasis and surgical resection is usually curative. Herein, we report two cases of PHCT associated with poor outcomes due to late diagnosis. Both cases presented late with non-specific symptoms. One patient presented after a 2-week history of symptoms and the second case had a longstanding two years symptomatic interval during which he remained undiagnosed and not properly worked up. Both these cases were diagnosed with hepatic carcinoid tumor, which originates from neuroendocrine cells. Case 1 opted for palliative care and expired in one month’s time.
    [Show full text]
  • Immunohistochemical Differential Diagnosis Between Thymic Carcinoma and Type B3 Thymoma: Diagnostic Utility of Hypoxic Marker, GLUT-1, in Thymic Epithelial Neoplasms
    Modern Pathology (2009) 22, 1341–1350 & 2009 USCAP, Inc. All rights reserved 0893-3952/09 $32.00 1341 Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms Masakazu Kojika1,2, Genichiro Ishii1, Junji Yoshida2, Mituyo Nishimura2, Tomoyuki Hishida2, Shu-ji Ota1, Yukinori Murata1, Kanji Nagai2 and Atsushi Ochiai1 1Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan and 2Thoracic Surgery Division, National Cancer Center Hospital East, Kashiwa, Chiba, Japan There are only a few immunohistochemical markers that are useful for differentiating thymic carcinomas from type B3 thymomas. The purpose of this study is to examine the additional markers that would be useful for differentiating between thymic carcinoma and thymoma type B3. We performed a tissue microarray analysis of surgically resected thymic tumor specimens from12 cases of thymic carcinoma, 7 cases of type B3 thymoma, and 68 cases of other types of thymoma. Immunostaining using 49 antibodies was scored based on staining intensity and the percentage of cells that stained positive. Seven proteins that were selected by the staining scores, namely, GLUT-1 (167 vs 4), CA-IX (110 vs 15), c-kit (162 vs 44), CD5 (33 vs 0), MUC-1 (54 vs 0), CEA (42 vs 0), and CK18 (110 vs 42), were significantly higher in the thymic carcinomas than in the type B3 thymomas. The staining sensitivity and specificity of the antibodies for thymic carcinoma were GLUT-1, sensitivity 72% and specificity 100%; CA-IX, 58 and 71%; c-kit, 72 and 85%; CD5, 33 and 100%; CK18, 58 and 71%; MUC-1, 25 and 100%; and CEA, 33 and 100%.
    [Show full text]
  • Slug Overexpression Is Associated with Poor Prognosis in Thymoma Patients
    306 ONCOLOGY LETTERS 11: 306-310, 2016 Slug overexpression is associated with poor prognosis in thymoma patients TIANQIANG ZHANG, XU CHEN, XIUMEI CHU, YI SHEN, WENJIE JIAO, YUCHENG WEI, TONG QIU, GUANZHONG YAN, XIAOFEI WANG and LINHAO XU Department of Thoracic Surgery, The Affiliated Hospital, Qingdao University, Qingdao, Shandong 266003, P.R. China Received November 4, 2014; Accepted May 22, 2015 DOI: 10.3892/ol.2015.3851 Abstract. Slug, a member of the Snail family of transcriptional previously been regarded as a benign disease, but more recent factors, is a newly identified suppressive transcriptional factor evidence indicated that it is a potentially malignant tumor of E‑cadherin. The present study investigated the expression requiring prolonged follow‑up (4). However, biomarkers for pattern of Slug in thymomas to evaluate its clinical significance. thymoma diagnosis and prognosis have not yet been estab- Immunohistochemistry was used to investigate the expression lished. pattern of the Slug protein in archived tissue sections from Slug is a member of the Snail family of zinc‑finger tran- 100 thymoma and 60 histologically normal thymus tissue scription factors and was first identified in the neural crest and samples. The associations between Slug expression and developing mesoderm of chicken embryos (5). Slug induces the clinicopathological factors, such as prognosis, were analyzed. downregulation of E-cadherin, an adhesion molecule, leading Positive expression of Slug was detected in a greater propor- to the breakdown of cell-cell adhesions and the acquisition of tion of thymoma samples [51/100 (51%) patients, P<0.001] invasive growth properties in cancer cells (6). These changes compared with normal thymus tissues [9/60 (15%) cases].
    [Show full text]
  • Cholangiocarcinoma Associated With
    Schmidt et al. Journal of Medical Case Reports (2016) 10:200 DOI 10.1186/s13256-016-0989-1 CASE REPORT Open Access Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2- [fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report Sergio L. Schmidt1,2,3*, Juliana J. Schmidt1,2, Julio C. Tolentino2, Carlos G. Ferreira4,5, Sergio A. de Almeida6, Regina P. Alvarenga2, Eunice N. Simoes2, Guilherme J. Schmidt2, Nathalie H. S. Canedo7 and Leila Chimelli7 Abstract Background: Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. Case presentation: We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient’s death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography- positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes.
    [Show full text]
  • Genetics of Neuroendocrine and Carcinoid Tumours
    Endocrine-Related Cancer (2003) 10 437–450 NEUROENDOCRINE TUMOURS Genetics of neuroendocrine and carcinoid tumours P D Leotlela, A Jauch1, H Holtgreve-Grez1 and R V Thakker Molecular Endocrinology Group, Nuffield Department of Medicine, University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK 1Institute of Human Genetics, University of Heidelberg, Germany (Requests for offprints should be addressed to R V Thakker; Email: [email protected]) Abstract Neuroendocrine tumours (NETs) originate in tissues that contain cells derived from the embryonic neural crest, neuroectoderm and endoderm. Thus, NETs occur at many sites in the body, although the majority occur within the gastro-entero-pancreatic axis and can be subdivided into those of foregut, midgut and hindgut origin. Amongst these, only those of midgut origin are generally argentaffin positive and secrete serotonin, and hence only these should be referred to as carcinoid tumours. NETs may occur as part of complex familial endocrine cancer syndromes, such as multiple endocrine neoplasia type 1 (MEN1), although the majority occur as non-familial (i.e. sporadic) isolated tumours. Molecular genetic studies have revealed that the development of NETs may involve different genes, each of which may be associated with several different abnormalities that include point mutations, gene deletions, DNA methylation, chromosomal losses and chromosomal gains. Indeed, the foregut, midgut and hindgut NETs develop via different molecular pathways. For example, foregut NETs have frequent deletions and mutations of the MEN1 gene, whereas midgut NETs have losses of chromosome 18, 11q and 16q and hindgut NETs express transforming growth factor-α and the epidermal growth factor receptor.
    [Show full text]
  • New Jersey State Cancer Registry List of Reportable Diseases and Conditions Effective Date March 10, 2011; Revised March 2019
    New Jersey State Cancer Registry List of reportable diseases and conditions Effective date March 10, 2011; Revised March 2019 General Rules for Reportability (a) If a diagnosis includes any of the following words, every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report the case to the Department in accordance with the provisions of N.J.A.C. 8:57A. Cancer; Carcinoma; Adenocarcinoma; Carcinoid tumor; Leukemia; Lymphoma; Malignant; and/or Sarcoma (b) Every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report any case having a diagnosis listed at (g) below and which contains any of the following terms in the final diagnosis to the Department in accordance with the provisions of N.J.A.C. 8:57A. Apparent(ly); Appears; Compatible/Compatible with; Consistent with; Favors; Malignant appearing; Most likely; Presumed; Probable; Suspect(ed); Suspicious (for); and/or Typical (of) (c) Basal cell carcinomas and squamous cell carcinomas of the skin are NOT reportable, except when they are diagnosed in the labia, clitoris, vulva, prepuce, penis or scrotum. (d) Carcinoma in situ of the cervix and/or cervical squamous intraepithelial neoplasia III (CIN III) are NOT reportable. (e) Insofar as soft tissue tumors can arise in almost any body site, the primary site of the soft tissue tumor shall also be examined for any questionable neoplasm. NJSCR REPORTABILITY LIST – 2019 1 (f) If any uncertainty regarding the reporting of a particular case exists, the health care facility, physician, dentist, other health care provider or independent clinical laboratory shall contact the Department for guidance at (609) 633‐0500 or view information on the following website http://www.nj.gov/health/ces/njscr.shtml.
    [Show full text]