Analytic and Differential geometry Mikhail G. Katz∗ Department of Mathematics, Bar Ilan University, Ra- mat Gan 52900 Israel Email address:
[email protected] ∗Supported by the Israel Science Foundation (grants no. 620/00-10.0 and 84/03). Abstract. We start with analytic geometry and the theory of conic sections. Then we treat the classical topics in differential geometry such as the geodesic equation and Gaussian curvature. Then we prove Gauss’s theorema egregium and introduce the ab- stract viewpoint of modern differential geometry. Contents Chapter1. Analyticgeometry 9 1.1. Circle,sphere,greatcircledistance 9 1.2. Linearalgebra,indexnotation 11 1.3. Einsteinsummationconvention 12 1.4. Symmetric matrices, quadratic forms, polarisation 13 1.5.Matrixasalinearmap 13 1.6. Symmetrisationandantisymmetrisation 14 1.7. Matrixmultiplicationinindexnotation 15 1.8. Two types of indices: summation index and free index 16 1.9. Kroneckerdeltaandtheinversematrix 16 1.10. Vector product 17 1.11. Eigenvalues,symmetry 18 1.12. Euclideaninnerproduct 19 Chapter 2. Eigenvalues of symmetric matrices, conic sections 21 2.1. Findinganeigenvectorofasymmetricmatrix 21 2.2. Traceofproductofmatricesinindexnotation 23 2.3. Inner product spaces and self-adjoint endomorphisms 24 2.4. Orthogonal diagonalisation of symmetric matrices 24 2.5. Classification of conic sections: diagonalisation 26 2.6. Classification of conics: trichotomy, nondegeneracy 28 2.7. Characterisationofparabolas 30 Chapter 3. Quadric surfaces, Hessian, representation of curves 33 3.1. Summary: classificationofquadraticcurves 33 3.2. Quadric surfaces 33 3.3. Case of eigenvalues (+++) or ( ),ellipsoid 34 3.4. Determination of type of quadric−−− surface: explicit example 35 3.5. Case of eigenvalues (++ ) or (+ ),hyperboloid 36 3.6. Case rank(S) = 2; paraboloid,− hyperbolic−− paraboloid 37 3.7.